精英家教网 > 初中数学 > 题目详情

用反证法证明:在同一平面内,a,b,c互不重合,若a∥b,b∥c,则a∥c.

解:假设a∥c不成立,则a,c一定相交,假设交点是P;
则过点P,与已知直线b平行的直线有两条:a、c;
与经过一点有且只有一条直线与已知直线平行相矛盾;
因而假设错误.
故a∥c.
分析:先假设a与c相交,然后经过推导得出与已知或定理相矛盾,从而证得原结论成立.
点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、用反证法证明:在同一平面内,a,b,c互不重合,若a∥b,b∥c,则a∥c.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用反证法证明“在同一平面内,若a⊥b,b⊥c,则a∥b”,应假设
a不平行b或a与b相交
a不平行b或a与b相交

查看答案和解析>>

科目:初中数学 来源: 题型:

用反证法证明“在同一平面内,若a⊥b,b⊥c,则a∥c”时,第一步往往是假设
a与c不平行
a与c不平行

查看答案和解析>>

同步练习册答案