精英家教网 > 初中数学 > 题目详情
一次函数y =" -2x" -3不经过(   )
A.第一象限B.第二象限C.第三象限D.第四象限
A
考查一次函数的图像特征。
点拨:由得系数符号和常数b决定。
解答:对于一次函数,当时直线经过第一、二、四象限或第二、三、四象限;,故直线经过第二、三、四象限,不经过第一象限。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

(2011•泰安)已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是(  )
A.m>0,n<2B.m>0,n>2
C.m<0,n<2D.m<0,n>2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

重庆市垫江县具有2000多年的牡丹种植历史.每年3月下旬至4月上旬,主要分布在该县太平镇、澄溪镇明月山一带的牡丹迎春怒放,美不胜收.由于牡丹之根———丹皮是重要中药材,目前已种植有60多个品种2万余亩牡丹的垫江,因此成为我国丹皮出口基地,获得“丹皮之乡”的美誉。为了提高农户收入,该县决定在现有基础上开荒种植牡丹并实行政府补贴,规定每新种植一亩牡丹一次性补贴农户若干元,经调查,种植亩数(亩)与补贴数额(元)之间成一次函数关系,且补贴与种植情况如下表:
补贴数额(元)
     10
      20
    ……
种植亩数(亩)
     160
      240
……
随着补贴数额的不断增大,种植规模也不断增加,但每亩牡丹的收益(元)会相应降低,且该县补贴政策实施前每亩牡丹的收益为3000元,而每补贴10元(补贴数为10元的整数倍),每亩牡丹的收益会相应减少30元.
(1)分别求出政府补贴政策实施后,种植亩数(亩)、每亩牡丹的收益(元)与政府补贴数额(元)之间的函数关系式;
(2)要使全县新种植的牡丹总收益(元)最大,又要从政府的角度出发,政府应将每亩补贴数额定为多少元?并求出总收益的最大值和此时种植亩数;(总收益=每亩收益×亩数)
(3)在(2)问中取得最大总收益的情况下,为了发展旅游业,需占用其中不超过50亩的新种牡丹园,利用其树间空地种植刚由国际牡丹园培育出的“黑桃皇后”.已知引进该新品种平均每亩的费用为530元,此外还要购置其它设备,这项费用(元)等于种植面积(亩)的平方的25倍.这样混种了“黑桃皇后”的这部分土地比原来种植单一品种牡丹时每亩的平均收益增加了2000元,这部分混种土地在扣除所有费用后总收益为85000元.求混种牡丹的土地有多少亩?(结果精确到个位)(参考数据:)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一次函数y=-x+a与y=x+b的图象相交于点(2,8),则=____

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为(时),分别与之间的部分函数图象如图9所示.

(1)当0≤x≤6时,分别求之间的函数关系式;
(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过棵.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数(k为常数且)的图象如图所示,则使y>0成立的x的取值范围为     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题10分) 
已知一次函数y=的图象与x轴交于点A.与轴交于点;二次函数图象与一次函数y=的图象交于两点,与轴交于两点且的坐标为

(1)求二次函数的解析式;
(2)在轴上是否存在点P,使得△是直角三角形?若存在,求出所有的点,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数y=kx+b图象如图,当x<0时y取值范围是(  )
A.y>-5B.y>-3C.y<-5D.y<-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数的图像如图所示,当时,y的取值范围是 (     )
A.B.C.D.

查看答案和解析>>

同步练习册答案