精英家教网 > 初中数学 > 题目详情
如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:
(1)△BCQ≌△CDP;
(2)OP=OQ.
证明:∵四边形ABCD是正方形,
∴∠B=∠PCD=90°,BC=CD,(2分)
∴∠2+∠3=90°,
又∵DP⊥CQ,
∴∠2+∠1=90°,
∴∠1=∠3,(4分)
在△BCQ和△CDP中,
∠B=∠PCD
BC=CD
∠1=∠3

∴△BCQ≌△CDP.(5分)

(2)连接OB.
(6分)
由(1):△BCQ≌△CDP可知:BQ=PC,(7分)
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
而点O是AC中点,
BO=
1
2
AC=CO,∠4=
1
2
∠ABC=45°=∠PCO
,(9分)
在△BOQ和△CDP中,
BQ=CP
∠4=∠PCO
BO=CO

∴△BOQ≌△COP,
∴OQ=OP.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

电力公司给四个村庄改造电网,这四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图,图中的实线部分,请你帮助计算一下,哪种架设方案最省电线?(以下数据可供参考:
2
=1.414
3
=1.732
5
=2.236

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?(  )
A.2B.3C.12-4
3
D.6
3
-6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线EF经过正方形ABCD的顶点D,AE⊥EF于E,CF⊥EF于F,求证:AE=DF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图正方形ABCD,E是BC的中点,F在AB上,且BF=
1
4
AB,猜想EF与DE的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD,O是正方形中心,P为OA上一点,PB⊥PE交CD于E.
(1)求证:PB=PE;
(2)试写出PA,PC,CE三者之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,有两个正方形和一个等边三角形,则图中度数为30°的角有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知边长为a的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点O,且AE=CF.
(1)若a=4,则四边形EBFD的面积为______;
(2)若AE=
1
3
AB,求四边形ACFD与四边形EBFD面积的比;
(3)设BE=m,用含m的式子表示△AOE与△COF面积的差.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知四边形ABCD是四个角都是直角,四条边都相等的正方形,点E在BC上,且CE=
1
4
BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AEF=
1
4
S四边形ABCF
;④∠AFE=90°,其中正确的结论的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案