【题目】如图,已知的半径为 4,是圆的直径,点是的切线上的一个动点,连接交于点,弦平行于,连接.
(1)试判断直线与的位置关系,并说明理由;
(2)当__________时,四边形为菱形;
(3)当___________时,四边形为正方形.
【答案】【解析】(1)证明见解析;⑵60°;⑶ .
【解析】
(1)根据EF∥AB,可以得到∠FAB和∠CAB的关系,可证得△ACB≌△AFB,可求得∠AFB=90°,可得出结论;
(2)根据四边形ADFE为菱形,通过变形可以得到∠CAB的度数;
(3)根据四边形ACBF为正方形,AC=4,AF⊥AE且AF=AE,利用勾股定理可求得EF的长
(1)BF与⊙A相切,理由如下:
∵EF∥AB,
∴∠AEF=∠CAB,∠AFE=∠FAB,
又∵AE=AF,
∴∠AEF=∠AFE,
∴∠FAB=∠CAB,
在△ABC和△ABF中
∴△ABC≌△ABF(SAS);
∴∠AFB=∠ACB =90°,
∴直线BF与⊙A相切.
(2)连接CF,如右图所示,
若四边形ADFE为菱形,则AE=EF=FD=DA,
又∵CE=2AE,CE是圆A的直径,
∴CE=2EF,∠CFE=90°,
∴∠ECF=30°,
∴∠CEF=60°,
∵EF∥AB,
∴∠AEF=∠CAB,
∴∠CAB=60°,
故答案为60°;
(3)若四边形ACBF为正方形,则AC=CB=BF=FA=4,且AF⊥AE,
∴
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:
(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;
(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求.
对于甲、乙两人的作法,下列叙述何者正确?( )
A. 两人皆正确 B. 两人皆错误
C. 甲正确,乙错误 D. 甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项( )
A.图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.
B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.
C.图2显示意大利当前的治愈率高于西班牙.
D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有( )
A.5个B.4个C.3个D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,点B是抛物线与x轴的另一个交点,点D与点C关于抛物线对称轴对称,作直线AD.点P在抛物线上,过点P作PE⊥x轴,垂足为点E,交直线AD于点Q,过点P作PG⊥AD,垂足为点G,连接AP.设点P的横坐标为m,PQ的长度为d.
(1)求抛物线的解析式;
(2)求点D的坐标及直线AD的解析式;
(3)当点P在直线AD上方时,求d关于m的函数关系式,并求出d的最大值;
(4)当点P在直线AD上方时,若PQ将△APG分成面积相等的两部分,直接写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)
数与代数 | 空间与图形 | 统计与概率 | 综合与实践 | |
学生甲 | 93 | 93 | 89 | 90 |
学生乙 | 94 | 92 | 94 | 86 |
(1)分别计算甲、乙同学成绩的中位数;
(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为.
(1)求,,的值;
(2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com