【题目】在△ABC中,AB=5,AC=8,BC=7,点D是BC上一动点,DE⊥AB于E,DF⊥AC于F,线段EF的最小值为_____.
【答案】
【解析】
如图,作CM⊥AB于M,AN⊥BC于N.连接AD,OE,OF.设AM=x,则BM=5﹣x.根据,可得,解得x=4,推出∠EAF=60°,由A,E,D,F四点共圆,推出当⊙O的直径最小时,EF的长最小,根据垂线段最短可知:当AD与AN重合时,AD的值最小,由此即可解决问题.
解:如图,作CM⊥AB于M,AN⊥BC于N.连接AD,OE,OF.设AM=x,则BM=5﹣x.
∵CM2=AC2﹣AM2=BC2﹣BM2,
∴82﹣x2=72﹣(5﹣x)2,
解得x=4,
∴AM=4,AC=2AM,
∴∠ACM=30°,∠CAM=60°,CM=AM=4,
∵S△ABC=BCAN=ABCM,
∴AN=,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
∴A,E,D,F四点共圆,
∴当⊙O的直径最小时,EF的长最小,
根据垂线段最短可知:当AD与AN重合时,AD的值最小,AD的最小值为,
此时OE=OF=,EF=2OEcos30°=,
∴EF的最小值为,
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,已知AE与BF相交于点D,AB⊥AE,垂足为点A,EF⊥AE,垂足为点E,点C在AD上,连接BC,要计算A、B两地的距离,甲、乙、丙、丁四组同学分别测量了部分线段的长度和角的度数,各组分别得到以下数据:
甲:AC、∠ACB;
乙:EF、DE、AD;
丙:AD、DE和∠DCB;
丁:CD、∠ABC、∠ADB.
其中能求得A、B两地距离的数据有( )
A.甲、乙两组B.丙、丁两组
C.甲、乙、丙三组D.甲、乙、丁三组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴、轴分别交于点,,抛物线经过点,将点向右平移5个单位长度,得到点.
(1)求点的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四边形CEGF=S△ABG,其中正确的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣2ax+m的图象经过点P(4,5),与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,且S△PAB=10.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点Q使得△PAQ和△PBQ的面积相等?若存在,求出Q点的坐标,若不存在,请说明理由;
(3)过A、P、C三点的圆与抛物线交于另一点D,求出D点坐标及四边形PACD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;
(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 ,是一元二次方程的两个实数根,且,抛物线的图象经过.
(1)求抛物线的解析式;
(2)设抛物线与轴的另一个交的为,抛物线的顶点为,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若每件商品降价2元,则平均每天可售出______件;
(2)当每件商品降价多少元时,该商品每天的销售利润为1600元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com