精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平面直角坐标系中,抛物线经过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴.

(1)求抛物线的解析式;
(2)如图2,过点B(0,﹣ )作x轴的平行线l,点C在直线l上,点D在y轴左侧的抛物线上,连接DB,以点D为圆心,以DB为半径画圆,⊙D与x轴相交于点M,N(点M在点N的左侧),连接CN,当MN=CN时,求锐角∠MNC的度数;

(3)如图3,在(2)的条件下,平移直线CN经过点A,与抛物线相交于另一点E,过点A作x轴的平行线m,过点(﹣3,0)作y轴的平行线n,直线m与直线n相交于点S,点R在直线n上,点P在EA的延长线上,连接SP,以SP为边向上作等边△SPQ,连接RQ,PR,若∠QRS=60°,线段PR的中点K恰好落在抛物线上,求Q点坐标.

【答案】
(1)

解:设过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴的抛物线为y=ax2

则﹣6 =36a,

∴a=﹣

∴y=﹣ x2


(2)

解:如图2中,作CF⊥MN于F,设⊙D与x轴的交点为(x,0),D(m,﹣ m2).

则有(x﹣m)2+( m22=m2+(﹣ m2+ 2

整理得x2﹣2mx+m2﹣3=0,

∴x=m+ 或m﹣

∴N(m+ ,0),M(m﹣ ,0)

∴MN=2

在Rt△CFN中,∵∠CFN=90°,CN=MN=2 ,CF=

∴CN=2CF,

∴∠CNF=30°


(3)

解:如图3中,

由题意可知平移直线CN经过点A的直线的解析式为y= x﹣8

记直线y= x﹣8 与直线x=﹣3的交点为G,则G(﹣3,﹣9 ),

∵m∥x轴,且过点A(6,﹣6 ),

∴S(﹣3,﹣6 ),

∴SG=3 ,AS=9,

∴tan∠2= =

∴∠2=60°,

∴∠1=30°,

∵∠QRS=60°

∴∠QRS=∠2,

∵∠RSQ+∠QSP=∠2+∠SPG,∠QSP=∠2=60°,

∴∠3=∠4,

在△SQR和△PSG中,

∴△SQR≌△PSH

∴SR=PG,RQ=SG,

∴RQ=SG=3 ,作DQ⊥n于D,

∴QRD=60°,

∴DQ= DR= RQ=

∴RD= QR=

∵n是过(﹣3,0)与y轴平行的直线,设R(﹣3,b),记n与x轴的交点为M,则RM=b,

∵S(﹣3,﹣6 ),

∴MS=6

∴SR=RM+MS=b+6 =PG,作PH⊥n于H,

∵∠2=60°,

∴GH= PG= (b+6 ),

∴MH=MG﹣HG=9 (b+6 )=6 b,

∴P(6+ b, b﹣6 ),

∵K是PR中点,

∴K( + b, b﹣3 ),

为了方便,记K(x,y),即x= + b,y= b﹣3 ,消去b得y= x﹣

∴中点K在直线y= 上运动,

消去y得到x2+6x﹣27=0,

∴x=3或﹣9(舍弃),

∴x=3,代入x= + b得到b=2

∴RM=2 ,DM=RM﹣RD=2 =

﹣3=

∴点Q的坐标为(


【解析】(1)设过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴的抛物线为y=ax2 , 点A代入求出a即可.(2)如图2中,作CF⊥MN于F,设⊙D与x轴的交点为(x,0),D(m,﹣ m2),根据半径相等列出方程,求出M、N坐标,推出MN=2 ,在Rt△CFN中,由CN=2CF推出∠FNC=30°即可解决问题.(3)如图3中,由题意可知平移直线CN经过点A的直线的解析式为y= x﹣8 ,记直线y= x﹣8 与直线x=﹣3的交点为G,则G(﹣3,﹣9 ),由△SQR≌△PSH,推出SR=PG,RQ=SG,推出RQ=SG=3 ,作DQ⊥n于D,记n与x轴的交点为M,则RM=b,由S(﹣3,﹣6 ),推出MS=6 ,可得P(6+ b, b﹣6 ),再求出PR中点k坐标,证明k在直线y= 上运动,由 消去y得到x2+6x﹣27=0,x=3或﹣9(舍弃),x=3,代入x= + b得到b=2 ,由此即可解决问题.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC中,AC=BC=10,AB=12.

(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.
(2)求证:直线DF是⊙O的切线;
(3)连接DE,记△ADE的面积为S1 , 四边形DECB的面积为S2 , 求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=4cm,AC=BD=3cm.CAB=DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为 cm/s,使得A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1:在四边形ABCD中,ABADBAD120°BADC90°EF分别是BCCD上的点.且∠EAF60°.探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G,使DGBE.连结AG先证明ABE≌△ADG,再证明AEF≌△AGF,可得出结论,他的结论应是   

探索延伸:

如图2,若在四边形ABCD中,ABADBD180°EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为

(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF= ∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?

(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ [θ,a ]

(理解)若点D与点A重合,则这个操作过程为FZ [45°,3];

(尝试)

(1)若点D恰为AB的中点(如图2),求θ;

(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上(如图3),求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC在平面直角坐标系中的位置如图所示,直线l过点M(3,0)且平行于y轴.

(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.

(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求P1P2的长.(用含a的代数式表示)

(3)通过计算加以判断,PP2的长会不会随点P位置的变化而变化.

查看答案和解析>>

同步练习册答案