精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦ADOC,弦DF⊥AB于点G.
(1)求证:点E是
BD
的中点;
(2)求证:CD是⊙O的切线;
(3)若sin∠BAD=
4
5
,⊙O的半径为5,求DF的长.
(1)证明:连接OD;
∵ADOC,
∴∠A=∠COB;(1分)
∵∠A=
1
2
∠BOD,
∴∠BOC=
1
2
∠BOD;
∴∠DOC=∠BOC;
DE
=
BE

则点E是
BD
的中点;(2分)

(2)证明:如图所示:
由(1)知∠DOE=∠BOE,(1分)
∵CO=CO,OD=OB,
∴△COD≌△COB;(2分)
∴∠CDO=∠B;
又∵BC⊥AB,
∴∠CDO=∠B=90°;
∴CD是⊙O的切线;(3分)

(3)在△ADG中,∵sinA=
DG
AD
=
4
5

设DG=4x,AD=5x;
∵DF⊥AB,
∴AG=3x;(1分)
又∵⊙O的半径为5,
∴OG=5-3x;
∵OD2=DG2+OG2
∴52=(4x)2+(5-3x)2;(2分)
∴x1=
6
5
,x2=0;(舍去)
∴DF=2DG=2×4x=8x=8×
6
5
=
48
5
(3分).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,AB是⊙O的直径,D是圆上一点,
AD
=
DC
,连接AC,过点D作弦AC的平行线MN.
(1)证明:MN是⊙O的切线;
(2)已知AB=10,AD=6,求弦BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,弦AB与半径相等,连接OB并延长,使BC=OB.
(1)试判断直线AC与⊙O的位置关系,并证明你的结论;
(2)请你在⊙O上找到一个点D,使AD=AC(完成作图,证明你的结论),并求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△AOB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD.
(1)求证:AB是⊙O的切线;
(2)求证:ABCD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB切⊙O于点B,∠A=30°,AB=2
3
,则半径OB的长为(  )
A.1B.
3
C.2D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O与CA、CB相切于点A、B,OA=OB=2
3
cm,AB=6cm,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA为⊙O的切线,A为切点,直线PO交⊙O于点E,F,过点A作PO的垂线BA,垂足为点O,交⊙O于点B,延长AO与⊙O交于点C,连接BC.
(1)求证:直线PB为⊙O的切线;
(2)若AB=FD,且BC=6,求出PE的长.

查看答案和解析>>

同步练习册答案