【题目】如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.
(1)求的值;
(2)求小岛,之间的距离(计算过程中的数据不取近似值).
科目:初中数学 来源: 题型:
【题目】观察下列图形:
(1)可知tanα=,tanβ=,用“画图法”求tan(α+β)的值,具体解法如下:
第一步:如图1所示,构造符合题意两个“背靠背”的直角三角形;
第二步:如图2所示,将图1中所有数据同比例扩大3倍;
第三步:如图3所示,依托中间的Rt△ABD的各顶点构造“水平﹣﹣竖直辅助线”,构造出“一线三直角”基本相似型,并补成矩形ACEF;由图可知tan(α+β)= .
(2)依据(1)的方法,已知tanα=,tanβ=,用“画图法”求tan(α+β)的值.
(3)扩展延伸,已知tanα=,tanβ=,直接写出tan(α﹣β)= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初中学校举行校园歌唱大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列题:
(1)请将条形统计图补全;
(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加全市校园歌唱大赛,请通过列表或画树状图求所选出的两人中有七年级或八年级同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.
(1)求证:DE=OE;
(2)若CD∥AB,求证:BC是⊙O的切线;
(3)在(2)的条件下,求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长是3,,连接、交于点,并分别与边、交于点、,连接,下列结论:①;②;③;④当时,.正确结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,是的中点,,动点从点出发沿向终点运动,动点从点出发沿折线向终点运动,两点速度均为每秒1个单位,两点同时出发,当其中一点到达终点后,运动停止,设运动时间为,的面积为(平方单位),则与之间的图象大致为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形内接于,是的直径,点在的延长线上,延长交的延长线于点,点是的中点,.
(1)求证:是的切线;
(2)求证:是等腰三角形;
(3)若,,求的值及的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com