精英家教网 > 初中数学 > 题目详情

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.

(1)求C点坐标;

(2)求直线MN的解析式;

(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

 

【答案】

(1)C(0,6);(2)y=-x+6;(3)P1(4,3),P2(-),P3(),P4,-).

【解析】

试题分析:

(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);

(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;

(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.

试题解析:

(1)解方程x2-14x+48=0得

x1=6,x2=8

∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根

∴OC=6,OA=8

∴C(0,6)

(2)设直线MN的解析式是y=kx+b(k≠0)

由(1)知,OA=8,则A(8,0)

∵点A、C都在直线MN上

解得

∴直线MN的解析式为y=-x+6

(3)

∵A(8,0),C(0,6)

∴根据题意知B(8,6)

∵点P在直线MN y=-x+6上

∴设P(a,--a+6)

当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:

①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);

②当PC=BC时,a2+(-a+6-6)2=64

解得,a=±,则P2(-),P3

③当PB=BC时,(a-8)2+(-a+6-6)2=64

解得,a=,则-a+6=-

∴P4

综上所述,符合条件的点P有:P1(4,3),P2(-),P3(),P4,-

考点:一次函数综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.

(1)求C点坐标;

(2)求直线MN的解析式;

(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(黑龙江绥化卷)数学(解析版) 题型:解答题

如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.

(1)求C点坐标;

(2)求直线MN的解析式;

(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

 

查看答案和解析>>

同步练习册答案