如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC于F,连接EF.求证:EF=CF.
(1)证明:如图
过点D作BC的垂线,垂足为G
因为ABCD为直角梯形,∠A=90°
所以,∠B=90°
又DG⊥BC
所以,四边形ABGD为矩形
已知AB=AD=6
所以,四边形ABGD为正方形
所以,AD=GD…………………………………………………(1)
已知DE⊥DC
所以,∠EDC=90°
即,∠EDG+∠CDG=90°
而在正方形ABGD中,∠EDG+∠ADE=90°
所以,∠ADE=∠CDG…………………………………………(2)
又∠A=∠DGC=90°…………………………………………(3)
所以,由(1)(2)(3)知:Rt△DAE≌Rt△DGC(ASA)
所以,DE=DC
已知DF为∠EDC平分线,则:∠EDF=∠CDF
边DF公共 边
所以:△EDF≌△CDF(SAS)
所以,EF=CF
解析:过点D作BC的垂线,结合题中条件构建出正方形,然后通过证明三角形全等证明线段相等。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com