精英家教网 > 初中数学 > 题目详情
如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,D精英家教网E=3cm,BC=7cm.
(1)求证:△AEF≌△DCE;
(2)请你求出EF的长.
分析:(1)根据矩形的四个角都是直角,可以证明∠ECD+∠CED=90°,再根据EF⊥EC可以证明∠AEF+∠CED=90°,从而得到∠ECD=∠AEF,然后利用角角边定理即可证明;
(2)先求出AE=4cm,再根据全等三角形的对应边相等可得AF=DE,然后利用勾股定理列式进行计算即可求解.
解答:(1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠ECD+∠CED=90°,
∵EF⊥EC,
∴∠AEF+∠CED=90°,
∴∠ECD=∠AEF,
在△AEF与△DCE中,
∠ECD=∠AEF
∠A=∠D=90°
EF=EC

∴△AEF≌△DCE(AAS);

(2)解:∵△AEF≌△DCE,
∴AF=DE,
∵DE=3cm,BC=7cm,
∴AF=3cm,AE=AD-DE=BC-DE=7-3=4cm,
在Rt△AEF中,EF=
AE2+AF2
=
42+32
=5.
故答案为:5.
点评:本题考查了矩形的性质以及全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在矩形ABCD中,AB=3,点E在BC上且∠BAE=30°,延长BC到点F使CF=BE,连接DF.
(1)判断四边形AEFD的形状,并说明理由;
(2)求DF的长度;
(3)若四边形AEFD是菱形,求菱形AEFD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在矩形ABCD中,AB=2,BC=4,四边形AFCE为菱形,求菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在矩形ABCD中,AB=6,BC=8,⊙E和⊙F分别是△ABC和△ADC的内切圆,与对角线AC分别切于E、F,则EF=
2
5
2
5

查看答案和解析>>

同步练习册答案