精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.

(1)求AD的长.

(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当DPF为等腰三角形时,求AP的长.

【答案】(1)AD=2;(2)当△DPF是等腰三角形时,AP的长为058﹣2

【解析】

1)先求出AC,进而求出AE=4,再用勾股定理求出DE即可得出结论;

2)分三种情况,利用相似三角形得出比例式,即可得出结论

1)如图1,连接OD

OA=OD=3BC=2

AC=8

DEAC的垂直平分线,

AE=AC=4

OE=AEOA=1

RtODE中,DE= =2

RtADE中,AD==2

2)当DP=DF时,如图2

PA重合,FC重合,则AP=0

DP=PF时,如图4

∴∠CDP=PFD

DEAC的垂直平分线,∠DPF=DAC

∴∠DPF=C

∵∠PDF=CDP

∴△PDF∽△CDP

∴∠DFP=DPC

∴∠CDP=CPD

CP=CD

AP=ACCP=ACCD=ACAD=82

PF=DF时,如图3

∴∠FDP=FPD

∵∠DPF=DAC=C

∴△DAC∽△PDC

AP=5

即:当△DPF是等腰三角形时,AP的长为0582

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点 O ABC 的边 AB 上一点,以 OB 为半径的O BC 于点 D,过点 D 的切线交 AC 于点 E,且 DEAC

(1)证明:ABAC

(2) ABcmBC=2cm,当点 O AB 上移动到使O 与边 AC 所在直线相切时O 的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为(  )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为5,ABC是⊙O的内接三角形,AB=8.AD和过点B的切线互相垂直,垂足为D

(1)求证:∠BAD+C=90°;

(2)求线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)

(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为多少m.

(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:一组邻边分别为的平行四边形的平分线分别交所在直线于点,则线段的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,斜坡AB130米,坡度i=1:2.4,BC⊥AC,

(1)BC= m,AC= m;

(2)现在计划在斜坡AB的中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE,若斜坡BE的坡角为30°,求平台DE的长;(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)

查看答案和解析>>

同步练习册答案