精英家教网 > 初中数学 > 题目详情
如图,甲、乙两渔船同时从港口出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10
2
海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为______海里/小时.
如图:乙沿南偏东30°方向航行则∠DOB=30°,甲沿南偏西75°方向航行,则∠AOD=75°,
当航行1小时后甲沿南偏东60°方向追赶乙船,则∠2=90°-60°=30°.
∵∠3=∠AOD=75°,
∴∠1=90°-75°=15°,
故∠1+∠2=15°+30°=45°.
过O向AB作垂线,则∠AOC=90°-∠1-∠2=90°-15°-30°=45°,
∵OA=10
2
,∠OAB=∠AOC=45°,
∴OC=AC=OA•sin45°=10
2
×
2
2
=10.
在Rt△OBC中,∠BOC=∠AOD+∠BOD-∠AOC=75°+30°-45°=60°,
∴BC=OC•tan60°=10
3

∴AB=AC+BC=10+10
3

因为OC=10海里,∠B=30°,所以OB=2OC=2×10=20,
乙船从O到B所用时间为20÷10=2小时,
由于甲从O到A所用时间为1小时,则从A到B所用时间为2-1=1小时,
甲船追赶乙船的速度为10+10
3
海里/小时.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点F在平行四边形ABCD的边AB的延长线上,连接DF交BC于点E.求证:
BF
AB
=
BE
EC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某货船以20海里/小时的速度将一批重要物资由A处运往正西方向的目的地B处,经16小时的航行到达,到达后必须立即卸货,接到气象部门的通知,一台风中心正以40海里/小时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)都会受到影响.
(1)B处是否会受到台风的影响答:______(请填“会”或“不会”)
(2)为避免受到台风的影响,该船应在______小时内卸完货物.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2
5
,则这个坡面的坡度为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在△ABC中,∠C=90°,D是AC边上一点,且AD=DB=5,CD=3,求tan∠CBD和sinA.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DEBC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S1,△BDE的面积为S2,那么x为何值时,S1=2S2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一架梯子AB斜靠在一面墙上,底端B与墙角C的距离BC为1米,梯子与地面的夹角为70°,求梯子的长度(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,要测量小山上电视塔BC的高度,在山脚下点A测得:塔顶B的仰角为∠BAD=40°,塔底C的仰角为∠CAD=29°,AC=200米,求电视塔BC的高.(精确到1米)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin29°≈0.48,cos29°≈0.87,tan29°≈0.55.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某住宅小区为了美化环境,增加绿地面积,决定在甲楼和乙楼之间的坡地上建一块斜坡草地为绿化带,如图,已知两楼的水平距离为15米,距离甲楼4米(即AB=4米)开始修建坡角为30°的斜坡,斜坡的顶端距离乙楼2米(即CD=2米),如果绿化带总长为10米,求绿化带的面积.(
3
≈1.732,结果保留整数)

查看答案和解析>>

同步练习册答案