1£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬?ABOCÈçͼ·ÅÖ㬵ãCµÄ×ø±êÊÇ£¨-1£¬0£©£¬µãAÔÚyÖáµÄÕý°ëÖáÉÏ£¬½«´ËƽÐÐËıßÐÎÈƵãO˳ʱÕëÐýת90¡ã£¬µÃ?A¡äB¡äOC¡ä£¬Å×ÎïÏßy=ax2+bx+4¹ýµãC¡¢A¡¢A¡ä£¬µãMÊÇ´ËÅ×ÎïÏßµÄÒ»¶¯µã£¬ÉèµãMµÄºá×ø±êΪm£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ
£¨2£©µ±MÔÚxÖá¼°ÆäÉÏ·½µÄÅ×ÎïÏßÉÏʱ£¨µãMÓëµãAºÍµãA¡ä¶¼²»Öغϣ©£¬Éè¡÷AMA¡äµÄÃæ»ýΪS£¬ÇóSÓëmµÄº¯Êý¹Øϵʽ£®
£¨3£©Çó£¨2£©ÖÐSµÄ×î´óÖµ¼°´ËʱMµÄ×ø±ê£®
£¨4£©ÈôN£¨t£¬0£©ÎªxÖáÉϵÄÒ»¶¯µã£¬¶¨µãQ×ø±êΪ£¨1£¬0£©£¬ÒÔµãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐÎÊÇÖÐÐĶԳÆͼÐΣ¬Ö±½Óд³ötÖµ£®
£¨5£©ÔÚ£¨4£©ÖУ¬µ±ÒÔµãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐμ´ÊÇÖÐÐĶԳÆͼÐΣ¬ÓÖÊÇÖá¶Ô³ÆͼÐÎʱ£¬Ö±½Óд³ötÖµ£®

·ÖÎö £¨1£©Çó³öC£¨-1£¬0£©£¬A¡ä£¨4£¬0£©´úÈëy=ax2+bx+4£¬×ª»¯Îª·½³Ì×é½â¾öÎÊÌ⣮
£¨2£©Èçͼ1ÖУ¬·ÖÁ½ÖÖÇéÐ΢ٵ±µãMÔÚyÖáÓÒ±ßʱ£¬ÉèM£¨m£¬-m2+3m+4£©£¬¸ù¾ÝS=S¡÷AMO+S¡÷OMA¡ä-S¡÷AOA¡ä¼ÆËã¼´¿É£®¢Úµ±µãMÔÚyÖáµÄ×ó±ßʱ£¬ÉèM1£¨m£¬-m2+3m+4£©£¬¸ù¾ÝS=${S}_{¡÷AO{M}_{1}}$+S¡÷AOA¡ä-${S}_{¡÷A¡äO{M}_{1}}$¼ÆËã¼´¿É£®
£¨3£©¸ù¾Ý£¨2£©Öеķֶκ¯Êý£¬·Ö±ðÇó³öSµÄÈ¡Öµ·¶Î§£¬¼´¿ÉÅжϣ®
£¨4£©·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¢ÙÒÔµãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐÎÊÇÖÐÐĶԳÆͼÐΣ¬µ±BQΪ±ßʱ£¬¾ØÐÎBQN1M1£¬¾ØÐÎBQN2M2ÊÇÖÐÐĶԳÆͼÐΣ¬¢ÚÒÔµãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐÎÊÇÖÐÐĶԳÆͼÐΣ¬µ±BQΪ¶Ô½ÇÏßʱ£¬Æ½ÐÐËıßÐÎBM1QN3ÊÇÖÐÐĶԳÆͼÐΣ®
£¨5£©ÀûÓã¨4£©ÖеĽáÂÛ¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâA£¨0£¬4£©£¬C£¨-1£¬0£©£¬A¡ä£¨4£¬0£©£¬
°ÑC£¨-1£¬0£©£¬A¡ä£¨4£¬0£©´úÈëy=ax2+bx+4µÃ$\left\{\begin{array}{l}{a-b+4=0}\\{16a+4b+4=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽy=-x2+3x+4£®

£¨2£©Èçͼ1ÖУ¬

¢Ùµ±µãMÔÚyÖáÓÒ±ßʱ£¬ÉèM£¨m£¬-m2+3m+4£©£¬
S=S¡÷AMO+S¡÷OMA¡ä-S¡÷AOA¡ä=$\frac{1}{2}$•4•m+$\frac{1}{2}$•4•£¨-m2+3m+4£©-$\frac{1}{2}$•4•4=-2m2+8m£®
¢Úµ±µãMÔÚyÖáµÄ×ó±ßʱ£¬ÉèM1£¨m£¬-m2+3m+4£©£¬
S=${S}_{¡÷AO{M}_{1}}$+S¡÷AOA¡ä-${S}_{¡÷A¡äO{M}_{1}}$=$\frac{1}{2}$•4•£¨-m£©+$\frac{1}{2}$•4•4-$\frac{1}{2}$•4•£¨-m2+3m+4£©=2m2-8m£¬
×ÛÉÏËùÊö£¬S=$\left\{\begin{array}{l}{2{m}^{2}-8m}&{£¨-1¡Üm£¼0£©}\\{-2{m}^{2}+8m}&{£¨0£¼m¡Ü4£©}\end{array}\right.$£®

£¨3£©ÓÉ£¨2£©¿ÉÖª£¬µ±-1¡Üm£¼0ʱ£¬0£¼s¡Ü10£¬
µ±0£¼m¡Ü-4ʱ£¬0£¼S¡Ü8£¬
¡àµ±m=-1ʱ£¬SµÄÖµ×î´ó£¬×î´óֵΪ10£¬´ËʱM£¨-1£¬0£©£®

£¨4£©Èçͼ2ÖУ¬

¢ÙÒÔµãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐÎÊÇÖÐÐĶԳÆͼÐΣ¬µ±BQΪ±ßʱ£¬¾ØÐÎBQN1M1£¬¾ØÐÎBQN2M2ÊÇÖÐÐĶԳÆͼÐΣ¬´ËʱN1£¨3£¬0£©£¬N2£¨0£¬0£©£®
¢ÚÒÔµãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐÎÊÇÖÐÐĶԳÆͼÐΣ¬µ±BQΪ¶Ô½ÇÏßʱ£¬Æ½ÐÐËıßÐÎBM1QN3ÊÇÖÐÐĶԳÆͼÐΣ¬´ËʱN3£¨-1£¬0£©£®
×ÛÉÏËùÊö£¬µãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐÎÊÇÖÐÐĶԳÆͼÐΣ¬tֵΪ-1»ò0»ò3£®

£¨5£©ÓÉ£¨4£©¿ÉÖªµ±ÒÔµãM¡¢N¡¢B¡¢QΪ¶¥µãµÄËıßÐμ´ÊÇÖÐÐĶԳÆͼÐΣ¬ÓÖÊÇÖá¶Ô³ÆͼÐÎʱ£¬tֵΪ0»ò3£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢´ý¶¨ÏµÊý·¨¡¢Èý½ÇÐεÄÃæ»ý¡¢ÖÐÐĶԳÆͼÐΡ¢Öá¶Ô³ÆͼÐεÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬¿¼ÂÇÎÊÌâҪȫÃ棬עÒâ²»ÄÜ©½â£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª£¬Èçͼ£¬¡ÑOµÄ°ë¾¶Îª2£¬ÏÒABµÄ³¤Îª2$\sqrt{3}$£®
£¨1£©ÈôµãPΪԲÉÏÒ»¶¯µã£¨µãP²»ÓëA¡¢BÖغϣ©£¬Çó¡ÏAPBµÄ¶ÈÊý£»
£¨2£©ÈôµãPΪÓÅ»¡ABÉÏÒ»¶¯µã£¨µãP²»ÓëA¡¢BÖغϣ©£¬ÉèµãA¹ØÓÚÖ±ÏßBPµÄ¶Ô³ÆµãΪA¡ä£º
¢Ùµ±µãA¡äÂäÔÚÔ²ÉÏʱ£¬ÊÔÅжϵãPÔ˶¯µ½Ê²Ã´Î»Öã¿
¢ÚÈôÖ±ÏßBA¡äÓë¡ÑOÏàÇÐÓÚBµã£¬ÇóBPµÄ³¤£»
¢Û¼Ç¡ÏBAP=¦Á£¬ÔÚµãPÔ˶¯µÄ¹ý³ÌÖУ¬ÈôÏ߶ÎBA¡äÓëÓÅ»¡APBÓÐÁ½¸ö¹«¹²µã£¬ÇëÖ±½Óд³ö¦ÁµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÅ×ÎïÏßy=-x2+2x+2£¬¸ÃÅ×ÎïÏߵĶԳÆÖáÊÇÖ±Ïßx=1£¬¶¥µã×ø±ê£¨1£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬ÒÑÖªAE£¬BDÊÇ¡÷ABCµÄ½Çƽ·ÖÏߣ¬AEÓëBDÏཻÓÚµãP£¬ÈôAB=BC£¬ÇÒAB¡ÙAC£¬ÔòͼÖеÄÈ«µÈÈý½ÇÐÎÓУ¨¡¡¡¡£©
A£®0¶ÔB£®1¶ÔC£®2¶ÔD£®3¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èôa=2b£¬Ôò$\frac{{a}^{2}-{b}^{2}}{{a}^{2}-ab}$µÄÖµÊÇ$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬Ö±Ïßy=x-3ÓëxÖá¡¢yÖá·Ö±ðÏཻÓÚµãA£¬B£¬¾­¹ýA£¬BÁ½µãµÄÅ×ÎïÏßy=-x2+bx+cÓëxÖáµÄÁíÒ»¸ö½»µãΪC£®
£¨1£©È·¶¨Å×ÎïÏߵĽâÎöʽ¼°µãCµÄ×ø±ê£»
£¨2£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãE£¬Ê¹µÃEB+ECµÄÖµ×îС£¬Èô´æÔÚ£¬Çó³öµãEµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãF£¬Á¬½ÓAF£¬Ê¹¡ÏFAO=¡ÏOBC£¬Èô´æÔÚ£¬Çó³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ1£¬ÒÑÖª£ºËıßÐÎABCDÊÇ¡ÑOµÄÄÚ½ÓËıßÐΣ¬Á¬½áAC£¬BD£¬Èô¡ÏDCA+¡ÏDCB=180¡ã£®
£¨1£©ÇóÖ¤£ºAD=BD£»
£¨2£©Èçͼ2£¬Èô¡ÏBCA=60¡ã£¬ÇóÖ¤£ºCD+BC=AC£»
£¨3£©Èçͼ3£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýA×÷AE¡ÍAC½»¡ÑOÓÚE£¬PΪ»¡ADÉÏÒ»µã£¬Á¬½ÓBP¡¢AP¡¢BPÓëAC½»ÓÚFµã£¬¹ýA×÷AH¡ÍPBÓÚH£¬ÈôCD=AE£¬FH£ºBH=4£º21£¬¡ÑO°ë¾¶Îª5£¬ÇóÏÒAPµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Äܽ«Èý½ÇÐÎÃæ»ýƽ·Ö³ÉÏàµÈÁ½²¿·ÖµÄÊÇÈý½ÇÐεģ¨¡¡¡¡£©
A£®½Çƽ·ÖÏßB£®¸ßC£®ÖÐÏßD£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®A£¬B£¬CÈýµãÔÚ¡ÑOÉÏ£¬OD¡ÍBCÓÚµãD£¬¡ÏBOD=40¡ã£¬Ôò¡ÏBACµÈÓÚ£¨¡¡¡¡£©
A£®20¡ãB£®40¡ã»ò140¡ãC£®40¡ãD£®20¡ã»ò160¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸