精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

【答案】分析:(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值;
(2)先求出直线AC的解析式,由于BD∥AC,那么直线BD的斜率与直线AC的相同,可据此求出直线BD的解析式,联立抛物线的解析式即可求出D点的坐标;由图知四边形ACBD的面积是△ABC和△ABD的面积和,由此可求得其面积;
(3)易知OA=OB=OC=1,那么△ACB是等腰直角三角形,由于AC∥BD,则∠CBD=90°;根据B、C的坐标可求出BC、BD的长,进而可求出它们的比例关系;若以A、M、N为顶点的三角形与△BCD相似,那么两个直角三角形的对应直角边应该成立,可据此求出△AMN两条直角边的比例关系,连接抛物线的解析式即可求出M点的坐标.
解答:解:(1)依题意,得:,解得
∴抛物线的解析式为:y=-x2+1;

(2)易知A(-1,0),C(0,1),则直线AC的解析式为:y=x+1;
由于AC∥BD,可设直线BD的解析式为y=x+h,则有:1+h=0,h=-1;
∴直线BD的解析式为y=x-1;联立抛物线的解析式得:
,解得
∴D(-2,-3);
∴S四边形ACBD=S△ABC+S△ABD=×2×1+×2×3=4;

(3)∵OA=OB=OC=1,
∴△ABC是等腰Rt△;
∵AC∥BD,
∴∠CBD=90°;
易求得BC=,BD=3
∴BC:BD=1:3;
由于∠CBD=∠MNA=90°,若以A、M、N为顶点的三角形与△BCD相似,则有:
△MNA∽△CBD或△MNA∽△DBC,得:
==3;
即MN=AN或MN=3AN;
设M点的坐标为(x,-x2+1),
①当x>1时,AN=x-(-1)=x+1,MN=x2-1;
∴x2-1=(x+1)或x2-1=3(x+1)
解得x=,x=-1(舍去)或x=4,x=-1(舍去);
∴M点的坐标为:M(,-)或(4,-15);
②当x<-1时,AN=-1-x,MN=x2-1;
∴x2-1=(-x-1)或x2-1=3(-x-1)
解得x=,x=-1(两个都不合题意,舍去)或x=-2,x=-1(舍去);
∴M(-2,-3);
故存在符合条件的M点,且坐标为:M(,-)或(4,-15)或(-2,-3).
点评:此题主要考查了二次函数解析式的确定、图形面积的求法以及相似三角形的判定和性质等重要知识点,同时还考查了分类讨论的数学思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案