精英家教网 > 初中数学 > 题目详情

如图,⊙O过正方形ABCD的顶点AB且与CD边相切,若AB=2,则圆的半径为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    1
B
分析:作OM⊥AB于点M,连接OB,在直角△OBM中根据勾股定理即可得到一个关于半径的方程,即可求得.
解答:解:作OM⊥AB于点M,连接OB,设圆的半径是x,
则在直角△OBM中,OM=2-x,BM=1,
∵OB2=OM2+BM2
∴x2=(2-x)2+1,
解得x=
故选B.
点评:在圆的有关半径、弦长、弦心距之间的计算一般要转化为直角三角形的计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知正方形ABCD.如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,通过证明△ABE≌△ADH,可得:BE=AH;
(1)如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,猜想BE与GH的数量关系为
BE=GH

(2)如图3,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,猜想EF与GH的数量关系为
EF=GH

(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图4所示,过正方形ABCD外一点O作互相垂直的两条直线m、n,m与AD、BC的延长线分别交于点E、F,n与AB、DC的延长线分别交于点G、H,试就该图形对你的结论加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:
①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;
②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;
③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;
根据以上设计方案,解答下列问题:
(1)你认为以上三种设计方案都符合要求吗?
(2)要根据图1完成证明,需要证明△
ABE
ABE
≌△
DAH
DAH
,进而得到线段
BE
BE
=
AH
AH

(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图直线l过正方形ABCD的顶点B、点A、点C到直线l的距离分别为5和3,则正方形ABCD的面积是
34
34

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD.
(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH;
(2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD,BC于点E,F,交AB,CD于点G,H,EF与GH相等吗?请写出你的结论;
(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m,n,m与AD,BC的延长线分别交于点E,F,n与AB,DC的延长线分别交于点G,H,试就该图形对你的结论加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,过正方形ABCD内部任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,证明:EF=GH;
(2)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?图2是其中一种情形,试就该图形对你的结论加以证明.

查看答案和解析>>

同步练习册答案