【题目】岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.
(1)甲、乙两队单独完成这项工程各需几个月的时间?
(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?
【答案】(1)甲队需要10个月完成,乙队需要15个月完成(2)有2种施工方案:甲队做2个月,乙队做12个月;甲队做4个月,乙队做9个月
【解析】
(1)设乙队需要x个月完成,则甲队需要(x﹣5)个月完成,根据两队合作6个月完成求得x的值即可.
(2)根据费用不超过141万元列出一元一次不等式求解即可
解:(1)设乙队需要x个月完成,则甲队需要(x﹣5)个月完成,
根据题意得:,解得:x=15.
经检验x=15是原方程的根.
当x=15时,x﹣5=10.
答:甲队需要10个月完成,乙队需要15个月完成.
(2)根据题意得:15a+9b≤141,,
解得:a≤4,b≥9.
∵a、b都是整数,∴a=2,b=12或a=4,b=9.
∴有2种施工方案:甲队做2个月,乙队做12个月;甲队做4个月,乙队做9个月.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某同学在一次测验中解答的填空题:①若x2=a2,则x=a;②方程2x(x-1)-x+1=0的解是x=1;③已知三角形两边分别为2和9,第三边长是方程x2-14x+48=0的根,则这个三角形的周长是17或19.其中答案完全正确的题目个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P从出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P第2018次碰到长方形的边时,点P的坐标为______.
【答案】
【解析】
根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.
解:如图所示:经过6次反弹后动点回到出发点,
,
当点P第2018次碰到矩形的边时为第337个循环组的第2次反弹,
点P的坐标为.
故答案为:.
【点睛】
此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.
【题型】填空题
【结束】
15
【题目】为了保护环境,某公交公司决定购买A、B两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2辆A型车比购买3辆B型车少60万元.
请求出a和b;
若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.
(1)求证:△ABC≌△DCB;
(2)△OBC是何种三角形?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;
(3)求((2)中△ABC的周长(结果保留根号);
(4)画出((2)中△ABC关于y轴对称的△A'B'C'.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,边长为的正方形的顶点、分别在轴正半轴、轴的负半轴上,二次函数的图象经过、两点.
求该二次函数的顶点坐标;
结合函数的图象探索:当时的取值范围;
设,且,两点都在该函数图象上,试比较、的大小,并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形 ABCD 中,∠C=70°,∠B=∠D=90°,E、F 分别是 BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为()
A.30°B.40°C.50°D.70°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com