精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=10cm,BC=20cm.P、Q两点同时从A点出发,分别以1cm/秒和2cm/秒的速度沿A?B?C?D?A运动,当Q点回到A点时,P、Q两点即停止运动,设点P、Q运动时间为t秒.
(1)当P、Q分别在AB边和BC边上运动时,设以P、B、Q为顶点的三角形面积为s,精英家教网请写出s关于t的函数解析式及自变量t的取值范围;
(2)在整个运动过程中,t取何值时,PQ与BD垂直?
分析:(1)当P、Q分别在AB边和BC边上运动时,运动时间t满足5<t<10,△PBQ的米娜及就可以用时间t表示出来,从而得到函数解析式;
(2)首先以B为原点建立平面直角坐标系,使BC落在x轴正半轴,BA落在y轴正半轴上,根据条件易求直线BD的解析式中的一次项系数是
1
2
.两直线互相垂直时,一次项系数一定互为负倒数.因而直线PQ的一次项系数是-2.分两种情况:①点P在AB上,点Q在BC上;②点P在BC上,点Q在AD上.针对每一种情况,都可以将P、Q的坐标用含t的代数式表示出来,代入直线PQ的解析式就可以解出t的值.
解答:解:(1)当P、Q分别在AB边和BC边上运动时,运动时间t满足5<t<10,BQ=2t-10,BP=10-t,
因而以P、B、Q为顶点的三角形面积为s=
1
2
×(2t-10)(10-t),
即s=-t2+15t-50(5<t<10);

(2)以B为原点建立平面直角坐标系,使BC落在x轴正半轴,BA落在y轴正半轴上.
∵D(20,10)在直线BD上,∴直线BD的解析式为y=
1
2
x.
∵两直线互相垂直时,一次项系数一定互为负倒数,
∴直线PQ的一次项系数是-2,
设直线PQ的解析式为y=-2x+b.
分两种情况:①当点P在AB上,点Q在BC上时,
BP=10-t,BQ=2t-10,
∴P(0,10-t),Q(2t-10,0).
把点P、Q的坐标分别代入y=-2x+b,得10-t=b,0=-2(2t-10)+b,
解得t=6,b=4;
②点P在BC上,点Q在AD上时,
BP=t-10,AQ=60-2t,
∴P(t-10,0),Q(60-2t,10).
把点P、Q的坐标分别代入y=-2x+b,得0=-2(t-10)+b,10=-2(60-2t)+b,
解得t=25,b=30.
综上所述,t=6或t=25.
点评:本题是函数与矩形相结合的问题,根据图形求出函数的解析式是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案