【题目】(1)如图(1),已知:在等腰直角三角形中,,直线经过点,直线,直线,垂足分别为点、.则、和之间的数量关系是: .
(2)如图(2),将(1)中的条件改为:在等腰三角形中,、、三点都在直线上,且,其中为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),、是直线上的两动点(、、三点互不重合),点为平分线上的一点,且和均为等边三角形,连接、,若,求证:.
【答案】(1)DE=BD+CE;(2)成立;(3)理由见解析.
【解析】
(1)根据同角的余角相等得出∠CAE=∠ABD,进而利用AAS得出△ABD≌△CAE,即可得出DE=BD+CE;
(2)根据∠BDA=∠AEC=∠BAC=α,得出∠CAE=∠ABD.在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;
(3)连接BC.由(2)的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则有∠DBF=∠FAE,利用“SAS”可证明△DBF≌△EAF,即可得出结论.
(1)DE=BD+CE.理由如下:
如图1.
∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°.
又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD.
在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE.
∵DE=AD+AE,∴DE=CE+BD;
(2)成立.理由如下:
如图2.
∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD.
在△ADB和△CEA中,∵,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;
(3)DF=EF.理由如下:
连接BC.
∵△ABF和△ACF均为等边三角形,∴BF=BA=AF=AC,∠ABF=∠CAF=60°.
由(2)知,△ADB≌△CAE,BD=EA,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE.
在△DBF和△EAF中,∵,∴△DBF≌△EAF(SAS),∴DF=EF.
科目:初中数学 来源: 题型:
【题目】列方程组解应用题:在首届“一带一路”国际合作高峰论坛举办之后,某公司准备生产甲、乙两种商品销往“一带一路”沿线国家和地区,原计划生产甲商品和乙商品共210吨,采用新技术后,实际产量为230吨,其中甲商品超产5%,乙商品超产15%,求该公司实际生产甲、乙两种商品各多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
A 型 | B 型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直角三角形中,,直线过点.
(1)当时,如图①,分别过点、作于点,于点.求证:.
(2)当,时,如图②,点与点关于直线对称,连接、,动点从点出发,以每秒1个单位长度的速度沿边向终点运动,同时动点从点出发,以每秒3个单位的速度沿向终点运动,点、到达相应的终点时停止运动,过点作于点,过点作于点,设运动时间为秒.
①用含的代数式表示.
②直接写出当与全等时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:关于x的方程x2-2(m+1)x+m2=0.
(1)当m取何值时,方程有两个实数根?
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程mx2-2mx+m-2=0.
(1)若方程有两个不等实数根,求m的取值范围;
(2)若方程的两实数根为x1,x2,且|x1-x2|=1,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,并完成相应任务.
2000多年来,人们对勾股定理的证明颇感兴趣,不但因为这个定理重要、基本,还因为这个定理贴近人们的生活实际,所以很多人都探讨、研究它的证明,新的证法不断出现.
下面的图形是传说中毕达哥拉斯的证明图形:
证明:①在图1中,∵
4个直角三角形的面积+两个正方形的面积
=4× + + .
②在图2中,∵
4个直角三角形的面积+正方形的面积
=4× + .
∴4× + + =4× + .
整理得:
∴ .
任务:(1)将材料中的空缺部分补充完整;
(2)如图3,在△ABC中,∠A=60°,∠ACB=75°,CD⊥AB,AC=4,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在四边形中,为四边形的的平分线及外角的平分线所在的直线构成的锐角,若,,
(1)如图①,当>180°时,=_________(用含,的式子表示);
(2)如图②,当<180°时,请在图②中,画出,且______(用含,的式子表示);
(3)当,满足条件_______时,不存在.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com