精英家教网 > 初中数学 > 题目详情

【题目】如图,的边位于直线上,,若由现在的位置向右无滑动地旋转,当次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)

【答案】

【解析】

根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先以B点为旋转中心,顺时针旋转120°A1,再以点C1为旋转中心,顺时针旋转90°A2,然后根据弧长公式计算两段弧长,从而得到点A3次落在直线上时,点A所经过的路线的长.

∵Rt△ABC,AC=,∠ACB=90°,∠A=30°

∴BC=1,AB=2BC=2,∠ABC=60°

∵Rt△ABC由现在的位置向右无滑动的翻转,且点A3次落在直线l上时,3的长,2的长,

A经过的路线长=×3+×2=(4+)π.

故答案为:(4+)π.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线过B(﹣2,6),C(2,2)两点.

(1)试求抛物线的解析式;

(2)记抛物线顶点为D,求△BCD的面积;

(3)若直线向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过边长为1的等边的边上一点,作延长线上一点,当时,连接边于,则的长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.

(1)求抛物线的解析式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;

(3)M是抛物线上任意一点,过点My轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,内接于

的度数;

沿折叠为,将沿折叠为,延长相交于点;求证:四边形是正方形;

,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,长方形ABCD(每个内角都是90°)的顶点的坐标分别是A0m),Bn0),(mn0),点EAD上,AEAB,点Fy轴上,OFOBBF的延长线与DA的延长线交于点MEFAB交于点N

1)试求点E的坐标(用含mn的式子表示);

2)求证:AMAN

3)若ABCD12cmBC20cm,动点PB出发,以2cm/s的速度沿BCC运动的同时,动点QC出发,以vcm/s的速度沿CDD运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年级共有300名学生,为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制)、并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.

a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100);

b.A课程成绩在70≤x<80这一组的是:

70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5

c.A,B两门课程成绩的平均数、中位数、众数如下:

课程

平均数

中位数

众数

A

75.8

m

84.5

B

72.2

70

83

根据以上信息,回答下列问题:

(1)写出表中m的值;

(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是______(填“A”或“B”),理由是________________________________

(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).

(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)

(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

查看答案和解析>>

同步练习册答案