精英家教网 > 初中数学 > 题目详情
如果一条抛物线轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是       三角形;
(2)如图,△OAB是抛物线的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由;
(3)在(2)的条件下,若以点E为圆心,r为半径的圆与线段AD只有一个公共点,求出r的取值范围.
(1)等腰;(2)存在,;(3).

试题分析:(1)根据抛物线的轴对称性和等腰三角形的判定可得结论.
(2)根据“抛物线三角形”求出A,B的坐标,求出A,B关于原点O为对称的点C,D的坐标,根据待定系数法求出过O、C、D三点的抛物线的表达式.
(3)点E为圆心,r为半径的圆与线段AD只有一个公共点,则⊙E与AD相切或⊙E的半径在AE和AD之间.
(1)等腰 .
(2)存在.
如图,作△OCD与△OAB关于原点O中心对称,则四边形ABCD为平行四边形.
当OA=OB时,平行四边形ABCD为矩形 .
又∵AO=AB,∴△OAB为等边三角形.
作AE⊥OB,垂足为E.
.∴(b﹥0).∴.

 .
设过点O,C,D三点的抛物线,则
,解之,得.
∴所求抛物线的表达式为 .

(3)①⊙E与AD相切时, .
②⊙E过点D时,.
③⊙E过点A时, .
综上所述,.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1).
(1)a=   
(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;
(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明同学将直角三角板直角顶点置于平面直角坐标系的原点O,两直角边与抛物线分别相交于A、B两点.小明发现交点A、B两点的连线总经过一个固定点,则该点坐标为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

平面直角坐标系中,抛物线轴于A、B两点(点A在点B左侧),与轴交于点C,点A、C的坐标分别为(-3,0),(0,3),对称轴直线轴于点E,点D为顶点.
(1)求抛物线的解析式;
(2)点P是直线AC下方的抛物线上一点,且,,求点P的坐标;
(3)点M是第一象限内抛物线上一点,且∠MAC=∠ADE,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标平面内,O为原点,抛物线经过点A(6,0),且顶点B(m,6)在直线上.
(1)求m的值和抛物线的解析式;
(2)如在线段OB上有一点C,满足,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请直接写出点N的坐标.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=与x轴交于点A,与y轴交于点C,以AC为直径作⊙M,点是劣弧AO上一动点(点与不重合).抛物线y=-经过点A、C,与x轴交于另一点B,

(1)求抛物线的解析式及点B的坐标;
(2)在抛物线的对称轴上是否存在一点P,是︱PA—PC︱的值最大;若存在,求出点P的坐标;若不存在,请说明理由。
(3)连于点,延长,使,试探究当点运动到何处时,直线与⊙M相切,并请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数在同一直角坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,二次函数的图象,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C14. 若P(27,m)在第14段图象C14上,则m=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知的图象如图所示,其对称轴为直线x=-1,与x轴的一个交点为(1,0),与y轴的交点在(0,2)与(0,3)之间(不包含端点),则下列结论正确的是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案