分析 (1)延长DM交EF于点P,易证AM=EM,即可证明△ADM≌△EPM,可得DM=PM,根据△DFP是直角三角形即可解题;
(2)延长DM交CE于点N,连接FN、DF,易证∠DAM=∠NEM,即可证明△ADM≌△ENM,可得EN=AD,DM=MN,可证CD=EN,即可证明△CDF≌△ENF,可得DF=NF,即可解题.
(3)根据(1)(2)的解答,可知$\frac{MD}{MF}$=tanα.
解答 证明:(1)MD=MF,MD⊥MF,如图1,延长DM交EF于点P,
∵四边形ABCD和四边形FCGE是正方形,
∴AD∥EF,∠MAD=∠MEP.∠CFE=90°.
∴△DFP是直角三角形.
∵M为AE的中点,
∴AM=EM.
在△ADM和△EPM中,
$\left\{\begin{array}{l}{∠MAD=∠MEP}\\{AM=EM}\\{∠AMD=∠EMP}\end{array}\right.$,
∴△ADM≌△EPM(ASA),
∴DM=PM,AD=PE,
∴M是DP的中点.
∴MF=$\frac{1}{2}$DP=MD,
∵AD=CD,
∴CD=PE,
∵FC=FE,
∴FD=FP,
∴△DFP是等腰直角三角形,
∴FM⊥DP,
即FM⊥DM.
(2)MD=MF,MD⊥MF,
如图2,延长DM交CE于点N,连接FN、DF,
∵CE是正方形CFEG对角线,
∴∠FCN=∠CEF=45°,
∵∠DCE=90°,
∴∠DCF=45°,
∵AD∥BC,
∴∠DAM=∠NEM,
在△ADM和△ENM中,
$\left\{\begin{array}{l}{∠DAM=∠NEM}\\{AM=EM}\\{∠AMD=∠EMN}\end{array}\right.$,
∴△ADM≌△ENM(ASA),
∴EN=AD,DM=MN,
∵AD=CD,
∴CD=EN,
在△CDF和△ENF中,
$\left\{\begin{array}{l}{CD=EN}\\{∠DCF=∠CEF=4{5}^{°}}\\{CF=EF}\end{array}\right.$,
∴△CDF≌△ENF,(SAS)
∴DF=NF,
∴FM=DM,FM⊥DM.
(3)根据(1)(2)的解答,可知$\frac{MD}{MF}$=tanα.
点评 本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADM≌△ENM和△CDF≌△ENF是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -4<x<1 | B. | x<-3或x>1 | C. | x<-4或x>1 | D. | -3<x<1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com