精英家教网 > 初中数学 > 题目详情
如图,两个同心圆的半径分别是3cm和6cm,大⊙O的弦MN=6
3
cm,试判断MN与小⊙O的位置关系,并说明理由.
∵大圆的弦长为6
3
cm,
∴弦的一半分为3
3
cm,
∴圆心到弦的距离为
62-(3
3
)2
=3cm,
∵小圆的半径为3cm,
∴d=r,
∴MN与小⊙O的位置关系是相切.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2
2
,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线MN经过⊙O上的点A,点B在MN上,连OB交⊙O于C点,且点C是OB的中点,AC=
1
2
OB,若点P是⊙O上的一个动点,当AB=2
3
时,求△APC的面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(教材变式题)如图所示,在△ABC中,AB=6,AC=8,∠BAC=60°,以BC边上一点作⊙O分别与AB,AC边相切,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点B、C、D都在⊙O上,过点C作ACBD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=6
3
cm.
(1)求证:AC是⊙O的切线;
(2)求⊙O的半径长;
(3)求由弦CD、BD与弧BC所围成的阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O1与⊙O2外切于M点,AF是两圆的外公切线,A、B是切点,DF经过O1、O2,分别交⊙O1于D、⊙O2于E,AC是⊙O1的直径,BC经过M点,连接AD.
(1)求证:ADBC;
(2)求证:MF2=AF•BF;
(3)如果⊙O1的直径长为8,tan∠ACB=
3
4
,求⊙O2的直径长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线MA交⊙O于A、B两点,BC是⊙O的直径,点D在⊙O上,且BD平分∠MBC,过D作DE⊥MA,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若DE+BE=12,⊙O的直径是20,求AB和BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O交于D,AD的延长线交BC于E,若∠C=20°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.
(1)求证:DE是⊙O的切线;
(2)若CE=3,∠A=30°,求⊙O的半径.

查看答案和解析>>

同步练习册答案