精英家教网 > 初中数学 > 题目详情
如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+b1与两坐标轴分别交于A、D两点,与抛物线交于B(1,3)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),求△PON的面积最大值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△POD面积的
1
9
?若存在,请求出点P的坐标;若不存在,请说明理由.
(1)根据题意得,
k+b1=3
2k+b1=2

解得
k=-1
b1=4

∴直线的解析式是y=-x+4,
根据图象,抛物线经过点B(1,3)、C(2,2)、(0,0),
a+b+c=3
4a+2b+c=2
c=0

解得
a=-2
b=5
c=0

∴抛物线的解析式是y=-2x2+5x;

(2)当y=0时,-2x2+5x=0,
解得x1=0,x2=
5
2

∴点N的坐标是(
5
2
,0),
∴点P的纵坐标越大,则△PON的面积越大,
当点P是抛物线的顶点时,△PON的面积最大,
此时
4ac-b2
4a
=
-52
4×(-2)
=
-25
-8
=
25
8

S△PON最大=
1
2
×
5
2
×
25
8
=
125
32


(3)当x=0时,y=4,
当y=0时,-x+4=0,解得x=4,
∴点A、D的坐标是A(0,4),D(4,0),
设点P的坐标是(x,-2x2+5x),则
1
2
×4x=
1
9
×
1
2
×4×(-2x2+5x),
整理得,2x2+4x=0,
解得x1=0,x2=-2,
此时点P不在x轴的上方,不符合题意,
∴不存在点P,使得△POA的面积等于△POD面积的
1
9
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
(1)求a的值和该抛物线顶点P的坐标.
(2)求△PAB的面积;
(3)若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在向汶川地震灾区执行空投任务中,一架飞机在空中沿着水平方向向空投地O处上方直线飞行,飞行员在A点测得O处的俯角为30°,继续向前飞行1千米到达B处测得O处的俯角为60°.飞机继续飞行0.1千米到达E处进行空投,已知空投物资在空中下落过程中的轨迹是抛物线,若要使空投物资刚好落在O处.
(1)求飞机的飞行高度.
(2)以抛物线顶点E为坐标原点建立直角坐标系,求抛物线的解析式.(所有答案可以用根号表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表
x-1012
y10521
(1)求该二次函数的解析式;
(2)函数值y随x的增大而增大时,x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
3
2
).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=
2
x
(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=
k
x
(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图1,过点E(0,-1)作平行于x轴的直线l,抛物线y=
1
4
x2上的两点A、B的横坐标分别为-1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF.
(1)求点A、B、F的坐标;
(2)求证:CF⊥DF;
(3)点P是抛物线y=
1
4
x2对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y1=ax2-2bx+c和y2=(a+1)•x2-2(b+2)x+c+3在同一坐标系中的图象如图所示,若OB=OA,BC=DC,且点B,C的横坐标分别为1,3,求这两个函数的解析式.

查看答案和解析>>

同步练习册答案