精英家教网 > 初中数学 > 题目详情
19.从甲、乙、丙三名同学中随机抽取环保志愿者,抽取两名,甲在其中的概率$\frac{2}{3}$.

分析 利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.

解答 解:∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,
∴抽取2名,甲在其中的概率为$\frac{2}{3}$;
故答案为:$\frac{2}{3}$.

点评 本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.若干学生分住宿舍,每间住4人余20人;每间住8人有一间不空也不满,则学生有44人.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列等式中,成立的是(  )
A.(a+b)2=a2+b2B.(a-b)2=a2-b2C.(-a-b)2=a2-2ab+b2D.(-a-b)(a-b)=b2-a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.
(1)如图1,当点P与点G分别在线段BC与线段AD上时,直接写出线段DG与PC的数量关系DG=2PC;
(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算或化简:
(1)($\frac{2}{3}$)-1+(π-3)0-(-2)-2                   
(2)(-2a)3+(a42÷(-a)5
(3)(p-q)4÷(q-p)3•(p-q)5                
(4)(2a+b)(2b-a)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知抛物线l1经过点E(1,0)和F(5,0),并交y轴于D(0,-5);抛物线l2:y=ax2-(2a+2)x+3(a≠0),
(1)试求抛物线l1的函数解析式;
(2)求证:抛物线 l2与x轴一定有两个不同的交点;
(3)若a=1
①抛物线l1、l2顶点分别为(3,4)、(2,-1);当x的取值范围是2≤x≤3时,抛物线l1、l2 上的点的纵坐标同时随横坐标增大而增大;
②已知直线MN分别与x轴、l1、l2分别交于点P(m,0)、M、N,且MN∥y轴,当1≤m≤5时,求线段MN的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.$\left\{\begin{array}{l}{\frac{3x-3}{2}-\frac{2x+1}{3}>x}\\{\frac{1}{2}[x-2(x+3)]<1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)计算:$\sqrt{9}$+|-2|-($\sqrt{2}$-1)0-(-$\frac{1}{2}$)-2.      
(2)解分式方程:$\frac{6}{{x}^{2}-1}$-$\frac{3}{x-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在正方形ABCD中,连接BD,点O是BD的中点,若点M、N是边AD上的两点,连接MO,NO,并分别延长与边BC相交于点M′,N′.
(1)求证:MN=M′N′;
(2)在不添加其他辅助线的情况下,直接写出图中的所有的全等三角形.

查看答案和解析>>

同步练习册答案