精英家教网 > 初中数学 > 题目详情
17.计算:
(1)(a+2)2+(1-a)(1+a);                       
(2)[(x+y)2-(x-y)2]÷(2y).

分析 (1)根据完全平方公式和平方差公式对原式化简;
(2)根据完全平方公式和单项式除法可以对原式化简.

解答 解:(1)(a+2)2+(1-a)(1+a)
=a2+4a+4+1-a2
=4a+5;    
(2)[(x+y)2-(x-y)2]÷(2y)
=[x2+2xy+y2-x2+2xy-y2]÷(2y)
=4xy÷(2y)
=2x.

点评 本题考查整式的混合运算,解题的关键是明整式的混合运算的计算方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.先化简,再求值:4(-3a2-ab)-2(5ab-8b2),其中$a=\frac{1}{2}$,b=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校为了解学生课外活动开展情况,从全校2000名学生中,随机抽部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目).并将调查结果绘制成如下两幅不完整的统计图.

根据图中信息完成下列各题:
(1)被调查的学生共有100人;
(2)在扇形统计图中,排球所在扇形的圆心角为36度;
(3)由该样本估算,全校学生中喜欢篮球的人数大约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生成绩(得分取正整数,满分为100分)作为样本,绘制了下面尚未完成的表格和频数分布直方图(住:无50.5以下成绩)
分组频数频率
50.5~60.520.04
60.5~70.580.16
70.5~80.510C
A~90.5B0.32
90.5~100.5140.28
合计
(1)频数分布表中A=80.5,B=16,C=0.2;
(2)补全频数分布直方图;
(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,把周长为22的△AOB放在平面直角坐标系中,OB在x轴的正半轴上,AO=AB=6,将△AOB绕点B按顺时针方向旋转一定角度后得到三角形A′O′B′,若点A的对应点A′在x轴上,则点O′的横坐标为$\frac{55}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.在实数:3.14159,$\root{3}{64}$,1.010010001…,$4.\stackrel{••}{21}$,π,$\frac{22}{7}$中,无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在矩形ABCD中,AD=acm,AB=bcm,(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动.⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原路返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).
(1)如图①,点P从A→B→C→D,全程共移动了a+2bcm(用含a、b的代数式表示);
(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;
(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.
奖项一等奖二等奖三等奖
|x||x|=4|x|=31≤|x|<3
(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;
(2)是否每次抽奖都会获奖,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知a、b、c均为实数,且$\sqrt{a-2}$+|b+1|+(c+3)2=0,方程ax2+bx+c=0的根是x1=-1,x2=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案