【题目】如图,在矩形中,,在上任取一点,连接.将沿折叠,使点恰好落在边上的点处,则的面积为_______.
【答案】
【解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可求出CE,再利用三角形面积求解.
解:设CE=x.
∵四边形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
在Rt△ABF中,由勾股定理得:
AF2=52-32=16,
∴AF=4,DF=5-4=1.
在Rt△DEF中,由勾股定理得:
EF2=DE2+DF2,
即x2=(3-x)2+12,
解得:x=,
∴DE=
∴S△EDF=
科目:初中数学 来源: 题型:
【题目】以下是两张不同类型火车的车票(“次”表示动车,“次”表示高铁):
根据车票中的信息填空:该列动车和高铁是 向而行(填“相”或“同”).
已知该动车和高铁的平均速度分别为,两列火车的长度不计.经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到2.求两地之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y关于x的二次函数y=ax2﹣bx+2(a≠0).
(1)当a=﹣2,b=﹣4时,求该函数图象的对称轴及顶点坐标.
(2)在(1)的条件下,Q(m,t)为该函数图象上的一点,若Q关于原点的对称点P也落在该函数图象上,求m的值.
(3)当该函数图象经过点(1,0)时,若A(,y1),B(,y2)是该函数图象上的两点,试比较y1与y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,为其内部一条射线.
(1)若平分,平分.求的度数;
(2)若,射线从起绕着点顺时针旋转,旋转的速度是每秒钟,设旋转的时间为,试求当时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与轴相交于点C(0,6),与直线OA相交于点A且点A纵坐标为2,动点P沿路线OAC运动.
(1)求直线BC的解析式.
(2)求的面积.
(3)当的面积是的面积的时,求出这时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数C1:(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A和点C的坐标;
(2)当AB=4时,
①求二次函数C1的表达式;
②在抛物线的对称轴上是否存在点D,使△DAC的周长最小,若存在,求出点D的坐标,若不存在,请说明理由;
(3)将(2)中抛物线C1向上平移n个单位,得到抛物线C2,若当0≤x≤时,抛物线C2与x轴只有一个公共点,结合函数图象,求出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学小组的同学为了解学生每周阅读的时间,随机调查了50名同学,绘制了如图所示的统计图,这组数据的中位数和众数分别是( )
A. 中位数是25人,众数是20人 B. 中位数和众数都是8小时
C. 中位数是13人,众数是20人 D. 中位数是6小时,众数是8小时
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com