精英家教网 > 初中数学 > 题目详情
如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.
①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是   
②若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=   
【答案】分析:①根据圆和正方形的对称性可知:GH=DG=GF,在直角三角形FGH中,利用勾股定理可得HF=,从而用含a的代数式表示半圆的半径为a,正方形边长为2a,所以可求得半圆的半径与正方形边长的比;
②连接EB、AE,OH、OI,可得OHCI是正方形,且边长是4,可设BD=x,AD=y,则BD=BH=x,AD=AI=y,分别利用直角三角形ABC和直角三角形AEB中的勾股定理和相似比作为相等关系列方程组求解即可求得半圆的直径AB=21.
解答:解:①如图,根据圆和正方形的对称性可知:GH=DG=GF,
H为半圆的圆心,不妨设GH=a,则GF=2a,
在直角三角形FGH中,由勾股定理可得HF=.由此可得,半圆的半径为a,正方形边长为2a,
所以半圆的半径与正方形边长的比是a:2a=:2;

②因为正方形DEFG的面积为100,所以正方形DEFG边长为10.
连接EB、AE,OI、OJ,
∵AC、BC是⊙O的切线,
∴CJ=CI,∠OJC=∠OIC=90°,
∵∠ACB=90°,
∴四边形OICJ是正方形,且边长是4,
设BD=x,AD=y,则BD=BI=x,AD=AJ=y,
在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;
在直角三角形AEB中,
∵∠AEB=90°,ED⊥AB,
∴△ADE∽△BDE∽△ABE,
于是得到ED2=AD•BD,即102=x•y②.
解①式和②式,得x+y=21,
即半圆的直径AB=21.
点评:本题综合考查了圆、三角形、方程等知识,是一道综合性很强的题目,难度偏上,需要正确理解相关知识点及懂得运用方能很好的解答本题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与直道相连接,已知直精英家教网道BC的长86.96米,跑道的宽为l米.(π=3.14,结果精确到0.01)
(1)求第一条跑道的弯道部分
AB
的半径.
(2)求一圈中第二条跑道比第一条跑道长多少米?
(3)若进行200米比赛,求第六道的起点F与圆心O的连线FO与OA的夹角∠FOA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•咸丰县二模)如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(12分)如图所示,一内壁光滑的细管弯成半径为R=0.4 m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态.将一个质量为m=0.8 kg的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C处后对轨道的压力为F1=58 N.水平轨道以B处为界,左侧AB段长为x=0.3 m,与小球的动摩擦因数为μ=0.5,右侧BC段光滑.g=10 m/s2,求:

(1)弹簧在压缩时所储存的弹性势能.
(2)小球运动到轨道最高处D点时对轨道的压力.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于


  1. A.
    8πB
  2. B.
    16π
  3. C.
    25π
  4. D.
    12.5π

查看答案和解析>>

科目:初中数学 来源:2012年湖北省恩施州咸丰县中考数学二模试卷(解析版) 题型:选择题

如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC、BC为直经作半圆,面积分别记为S1、S2,则S1+S2的值等于( )

A.8πB
B.16π
C.25π
D.12.5π

查看答案和解析>>

同步练习册答案