精英家教网 > 初中数学 > 题目详情
29、若直线y=(m-2)x+m经过第一、二、四象限,则m的范围是
0<m<2
分析:若函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,由此可以确定m的取值范围.
解答:解:∵直线y=(m-2)x+m经过第一、二、四象限,
∴m-2<0,m>0,
故0<m<2.
故填空答案:0<m<2.
点评:一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,精英家教网3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,半圆的圆心与坐标原点重合,圆的半径为1,直线l的解析式为y=x+t.若直线l与半圆只有一个交点,则t的取值范围是
 
;若直线l与半圆有交点,则t的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•本溪一模)在直角坐标系中,放置一个如图的直角三角形纸片AOB,已知OA=2,∠AOB=30°,D、E两点同时从原点O出发,D点以每秒
3
个单位长度的速度沿y轴正方向运动,E点以每秒1个单位长度的速度沿x轴正方向运动,设D、E两点的运动时间为t秒(t≠0).
(1)在点D、E的运动过程中,直线DE与线段OA垂直吗?请说明理由;
(2)当时间t在什么范围时,直线DE与线段OA有公共点?
(3)若直线DE与直线OA相交于点F,将△OEF沿DE向上折叠,设折叠后△OEF与△AOB重叠部分面积为S,请直接写出S与t的函数关系式,并写出t为何值时,折叠面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐陵市二模)如图,在平面直角坐标系中,线段AB的端点坐标为A(-1,2),B(3,1),若直线y=kx-2与线段AB有交点,则k的值可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在平面直角坐标系xoy中,一次函数y=
34
x+3
的图象与x轴和y轴交于A、B两精英家教网点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)分别求出点A′、B′的坐标;
(2)若直线A′B′与直线AB相交于点C,求S四边形OB?CB的值.

查看答案和解析>>

同步练习册答案