(本题满分12分)
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)抛物线的解析式为y=x2+2x-3 (2)点坐标为(-1,-4)(3)点Q的坐标为(-2,-3)
【解析】
试题分析:解:(1)把A(1,0),B(0,-3)代入y=x2+bx-3a中,得
解得
∴抛物线的解析式y=x2+2x-3
(2)令y=0,得x2+2x-3=0,
解得x1=-3,x2=1
∴点C(-3,0)
∵B(0,-3)
∴△BOC为等腰直角三角形.
∴∠CBO=45°过点P作PD⊥y轴,垂足为D,
∵PB⊥BC,∴∠PBD=45°∴PD=BD
所以可设点P(x,-3+x)
则有-3+x=x2+2x-3,∴x=-1,所以P点坐标为(-1,-4)
(3)由(2)知,BC⊥BP
当BP为直角梯形一底时,由图象可知点Q不可能在抛物线上.
若BC为直角梯形一底,BP为直角梯形腰时,
∵B(0,-3),C(-3,0),
∴直线BC的解析式为y=-x-3
∵直线PQ∥BC,且P(-1,-4),
∴直线PQ的解析式为y=-(x+1)-3-1即y=-x-5
联立方程组得
解得x1=-1,x2=-2
∴x=-2,y=-3,即点Q(-2,-3)
∴符合条件的点Q的坐标为(-2,-3)
考点:二次函数
点评:本题难度较大。主要考查学生对几种函数的综合运用。是中考的常考题型,复习备考时应加强训练。
科目:初中数学 来源: 题型:
5 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012年江苏省盐城市九年级上学期学情调查数学卷 题型:解答题
(本题满分12分)某商场购进一批单价为16元日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数Y(件)是价格X(元/件)的一次函数
1.(1)试求Y 与X之间的关系式。
2.(2)在商品积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本)
查看答案和解析>>
科目:初中数学 来源:2011-2012年江苏省海安县五校联考九年级上学期期中考试数学卷 题型:解答题
(本题满分12分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
1.(1)求弦AB的长;
2.(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;
3.(3)记△ABC的面积为S,若=4,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源:2011-2012年江苏省扬州市八年级第一学期期末考试数学卷 题型:解答题
(本题满分12分)如图①,一条笔直的公路上有A、B、C 三地,B、C 两地相距 150 千米,甲、乙两辆汽车分别从B、C 两地同时出发,沿公路匀速相向而行,分别驶往C、B 两地.甲、乙两车到A 地的距离、(千米)与行驶时间 x(时)的关系如图②所示.
根据图象进行以下探究:
1.(1)请在图①中标出 A地的位置,并作简要说明;
2.(2) 甲的速度为 ,乙的速度为 .
3.(3)求图②中M点的坐标,并解释该点的实际意义;
4.(4)在图②中补全甲车到达C地的函数图象,求甲车到 A地的距离与行驶时间x的函数关系式;
5.(5)出发多长时间,甲、乙两车距A点的距离相等?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com