分析 作AF⊥BC于F,DE⊥BC于E,根据等腰直角三角形的性质用AB表示出BC及AF的长,由锐角三角函数的定义求出∠1的度数,根据BC三角形内角和等于180°得出∠BOC的度数即可.
解答 解:如图,作AF⊥BC于F,DE⊥BC于E,
在Rt△ABC中,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴BC=$\sqrt{2}$AB,AF=$\frac{\sqrt{2}}{2}$AB,
∴AF=$\frac{1}{2}$BC.
又∵DE=AF,
∴DE=$\frac{1}{2}$BC=$\frac{1}{2}$BD,
∴$\frac{DE}{BD}$=$\frac{1}{2}$,
∴sin∠1=$\frac{1}{2}$,
∴∠1=30°,
∴∠BOC=180°-30°-45°=105°.
故答案为:105.
点评 本题考查了梯形及等腰三角形的判定,难度一般,关键是巧妙作辅助线进行解答.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com