精英家教网 > 初中数学 > 题目详情
如图,△ABC中AD是BC边上的高,CE是△ABC的一条角平分线,它们相交于点P.已知∠APE=55°,
∠AEP=75°,求△ABC的各个内角的度数.
∵∠APE=55°,∠AEP=75°,
∴∠BAD=180°-55°-75°=50°.
∵AD⊥BC,
∴∠B=90°-50°=40°,
∴∠BCE=∠AEC-∠B=75°-40°=35°.
又CE平分∠ACB,
∴∠ACB=70°,
∴∠BAC=180°-∠B-∠ACB=70°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在锐角△ABC中,∠A=50°,高BD、CE交于点O.那么∠BOC的度数为(  )
A.50°B.40°C.130°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是(  )
A.100°B.80°C.70°D.50°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠ABC=∠C,BD平分∠ABC,如果∠A=36°,那么∠ADB=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一副三角板如图所示叠放在一起,则图中∠α是______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,BE是∠ABC的内角平分线,CE是∠ACB的外角平分线,BE、CE交于E点,试探究∠E与∠A的大小关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1
(1)当∠A为70°时,则
∵∠ACD-∠ABD=∠______
∴∠ACD-∠ABD=______°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD-∠A1BD=
1
2
(∠ACD-∠ABD)
∴∠A1=______°;
(2)根据①中的计算结果写出∠A与∠A1之间等量关系______;
(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出∠A6与∠A的数量关系______;
(4)如图,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:
①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线AECD,∠EBF=135°,∠BFD=60°,则∠D等于(  )
A.75°B.45°C.30°D.15°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一副三角板如图摆放,若∠AGB=90°,则∠AFE=______度.

查看答案和解析>>

同步练习册答案