精英家教网 > 初中数学 > 题目详情
15.已知二次函数y=x2-2x+m的部分图象如图所示,则关于x的一元二次方程x2-2x+m=0的解为x1=-1,x2=3.

分析 求得抛物线与x轴的交点坐标,交点的横坐标就是方程的解.

解答 解:(3,0)关于x=1的对称点是(-1,0).
则一元二次方程x2-2x+m=0的解为x1=-1,x2=3.
故答案是:x1=-1,x2=3.

点评 本题考查了抛物线与x轴的交点,与x轴交点的横坐标就是令y=0所得方程的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.如果是$\root{3}{x-6}$的6-x立方根,那么x的值(  )
A.0B.3C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=a(x-h)2的对称轴为直线x=-2,且过点(1,-3).
(1)求该抛物线的解析式;
(2)该抛物线是由y=ax2经过怎样的平移得到的?
(3)当x在什么范围内时,y随x的增大而减小?当x取何值时,函数有最大(或最小)值?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.将一副三角板中的两块直角三角尺按如图方式叠放在一起(其中∠ACB=∠E=90°,∠A=60°,∠B=30°,∠ECD=∠EDC=45°).
(1)若∠ACE=125°,则∠BCD的度数为10°;
(2)将三角形ABC绕点C顺时针转动,设∠BCD=α,
①若AB∥CE,求α的度数(请说明理由);
②0°<α<180°时,这两块三角尺除了AB∥CE外,是否还存在互相平行的边?若存在,请直接写出α的所有可能的值(不必说明理由);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.现有甲、乙两把不相同的锁,各配有3把钥匙,总共6把钥匙,从这6把钥匙中任取2把.
(1)恰好能打开两把锁的概率是多少?
(2)要想打开甲、乙两把锁,至少取几把?至多取几把?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,在?ABCD中,AE⊥BC于E,E恰为BC的中点,AE=2BE
(1)求证:AD=AE;
(2)如图2,点P在BE上,作EF⊥DP于点F,连结AF.求证:DF-EF=$\sqrt{2}$AF;
(3)请你在备用图中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知△ABC∽△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的对应高,且AD:A′D′=2:3,则下列结论正确的是(  )
A.AB:A′B′=2:3B.S△ABC:S△A′B′C′=2:3
C.(AB+BC+AC):(A′B′+B′C′+A′C′)=4:9D.(AD+BC):(A′D′+B′C′)=4:9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在如图所示的方格中分别填入-8,-6,-4,-2,2,4,6,8这8个数,使得每行的三个数,每列的三个数,斜对角的三个数之和都相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.一商场为了处理某种商品的库存,对购买该商品的客户提出以下优惠:如果购买该商品不超过120件,每件售价80元;如果购买商品超过120件,每增加4件,所出售的这批商品每件售价均降低1元,如果每件商品最低售价不得少于60元,客户最终向商场支付购买该商品的总费用10500元,请问每件商品售价为多少元?该客户共购进了多少件商品?

查看答案和解析>>

同步练习册答案