如图,在四边形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=30°;延长CD到点E,连接AE,使得∠E=∠C.
(1)求证:四边形ABDE是平行四边形;
(2)若DC=12,求AD的长.
分析:(1)可证明AB∥ED,AE∥BD,即可证明四边形ABDE是平行四边形;由∠ABC=120°,∠C=60°,得AB∥ED;∠E=∠C=∠BDC=30°,得AE∥BD; (2)可证得四边形ABCD是等腰梯形,AD=BC,易证△BDC是直角三角形,可得BC=DC=6. 解答:证明:(1)∵∠ABC=120°,∠C=60°, ∴∠ABC+∠BCD=180°, ∴AB∥DC,即AB∥ED; 又∠C=60°,∠E=∠C,∠BDC=30°, ∴∠E=∠BDC=30°, ∴AE∥BD, ∴四边形ABDE是平行四边形; 解:(2)∵AB∥DC, ∴四边形ABCD是梯形, ∵DB平分∠ADC,∠BDC=30°, ∴∠ADC=∠BCD=60°, ∴四边形ABCD是等腰梯形; ∴BC=AD, ∵在△BCD中,∠C=60°,∠BDC=30°, ∴∠DBC=90°, 又DC=12, ∴AD=BC=DC=6. 点评:本题考查了知识点较多,有等腰梯形、直角三角形的性质以及平行四边形的判定和性质,只有牢记这些知识才能熟练运用. |
等腰梯形的性质;含30度角的直角三角形;平行四边形的判定与性质. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com