精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线x轴交于AB两点,与y轴交于点C,且OA=2OC=3

(1)求抛物线的解析式.

(2)若点D(22)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.

注:二次函数≠0)的对称轴是直线=.

【答案】12P

【解析】

解:(1)∵OA=2OC=3

A(-20),C03).

C03)代入c=3

A(-20)代入得,

解得b=

∴抛物线的解析式为

2)如图:连接AD,与对称轴相交于P

由于点A和点B关于对称轴对称,则BP+DP=AP+DP,当APD共线时BP+DP=AP+DP最小.

设直线AD的解析式为y=kx+b

A-20),D22)分别代入解析式得, ,解得,

∴直线AD解析式为y=x+1

∵二次函数的对称轴为

∴当x=时,y=×+1=

P).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,点、点轴上(点在点的左侧),点在第一象限,满足为直角,且恰使∽△,抛物线经过三点.

1)求线段的长;

2)求点的坐标及该抛物线的函数关系式;

3)在轴上是否存在点,使为等腰三角形?若存在,求出所有符合条件的点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC的顶角∠A=36°,若将其绕点C顺时针旋转36°,得到△,点B′在AB边上,ACE,连接AA′.有下列结论:①△ABC≌△;②四边形是平行四边形;③图中所有的三角形都是等腰三角形;其中正确的结论是(

A.①②B. C.②③D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC的斜边BC=4,∠ABC=30°,以ABAC为直径分别作圆.则这两圆的公共部分面积为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc的图象如图,则下列叙述正确的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为yax2c

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,点D是边BC的中点,联结AD.过点CCEAD于点E,联结BE

1)求证:BD2DEAD

2)如果∠ABC=∠DCE,求证:BDCEBEDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):

步数

频数

频率

0≤x<4000

8

a

4000≤x<8000

15

0.3

8000≤x<12000

12

b

12000≤x<16000

c

0.2

16000≤x<20000

3

0.06

20000≤x<24000

d

0.04

请根据以上信息,解答下列问题:

(1)写出a,b,c,d的值并补全频数分布直方图;

(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?

(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;

(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;

(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.

当t为   秒时,PAD的周长最小?当t为   秒时,PAD是以AD为腰的等腰三角形?(结果保留根号)

点P在运动过程中,是否存在一点P,使PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案