精英家教网 > 初中数学 > 题目详情
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为( )

A.π
B.π
C.2π
D.4π
【答案】分析:通过分析图可知:△ODB经过旋转90°后能够和△OCA重合(证全等也可),因此图中阴影部分的面积=扇形AOB的面积-扇形COD的面积,所以S=π×(9-1)=2π.
解答:解:由图可知,将△OAC顺时针旋转90°后可与△ODB重合,
∴S△OAC=S△OBD
因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.
故选C.
点评:本题中阴影部分的面积可以看作是扇形AOB与扇形COD的面积差,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,圆心角都是90°的扇形OAB与扇形OCD如图那样叠放在一起,连接AC、BD.求证:△AOC≌△BOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.精英家教网
(1)求证:AC=BD;
(2)若图中阴影部分的面积是
34
πcm2,OA=2cm,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.
(1)求证:△AOC≌△BOD;
(2)若OA=3cm,OC=1cm,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC、BD.
(1)AC与BD相等吗?为什么?
(2)若OA=2cm,OC=1cm,求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案