精英家教网 > 初中数学 > 题目详情
(2006•玉溪)如图,轴对称图形ABCDEFG的面积为56,∠A=90°,则点D的坐标是( )

A.(0,6)
B.(0,6.5)
C.(0,7)
D.(0,7.5)
【答案】分析:根据等腰直角三角形的性质求出△ABG的面积,得出矩形CDEF的面积,从而求出DE的长,结合轴对称的基本性质得到点D的坐标.
解答:解:∵这是一个轴对称图形,
∴A点坐标为(16,6).
又∵∠A=90°,
∴△ABG是等腰直角三角形,
∴AB=AG=6
∴△ABG的面积为AB•AG=×6×6=36,
所以矩形CDEF的面积为20,
又∵EF=16-6=10,
∴DE=2,
所以D点坐标为(0,7).
故选D.
点评:此题考查轴对称的基本性质,结合了图形的常见的变化,要根据等腰直角三角形的性质求出边长;此题考查的计算技巧性很强,要注意对一些特殊三角形的性质的应用.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《相交线与平行线》(02)(解析版) 题型:填空题

(2006•玉溪)如图,已知DE∥BC,EF∥AB,∠DEF=50°,∠C=70°,则∠A=    度.

查看答案和解析>>

科目:初中数学 来源:2006年云南省玉溪市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•玉溪)如图,半径分别为4cm和3cm的⊙O1,⊙O2相交于A,B两点,且O1O2=6cm,过点A作⊙O1的弦AC与⊙O2相切,作⊙O2的弦AD与⊙O1相切.
(1)求证:AB2=BC•BD;
(2)两圆同时沿连心线都以每秒1cm的速度相向移动,几秒钟时,两圆相切?
(3)在(2)的条件下,三点B,C,D能否在同一直线上?若能,求出移动的时间;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年云南省玉溪市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•玉溪)如图1,过平行四边形纸片的一个顶点作它的一条垂线段h,沿这条垂线段剪下三角形纸片,将它平移到右边,平移距离等于平行四边形的底边长a.
(1)平移后的图形是矩形吗?为什么?
(2)图2中,BD是平移后的四边形ABCD的对角线,F为AD上一点,CF交BD于点G,CE⊥BD于点E,求证:∠2=∠1+∠3.

查看答案和解析>>

科目:初中数学 来源:2006年云南省玉溪市中考数学试卷(大纲卷)(解析版) 题型:填空题

(2006•玉溪)如图,已知DE∥BC,EF∥AB,∠DEF=50°,∠C=70°,则∠A=    度.

查看答案和解析>>

同步练习册答案