5£®²ÄÁÏ£ºÒ»°ãµØ£¬¶ÔÓÚÈÎÒâµÄa¡¢b£¬ÓɶàÏîʽµÄ³Ë·¨·¨Ôò¿ÉÒԵõ½
£¨a+b£©2=£¨a+b£©£¨a+b£©=a2+ab+ab+b2=a2+2ab+b2
£¨a+b£©2=a2+2ab+b2     ¼´Íêȫƽ·½¹«Ê½£º
£¨a-b£©2
=[a+£¨-b£©]2
=a2+2a£¨-b£©+£¨-b£©2
=a2-2ab+b2
¼ÆË㣨a+b£©£¨a2-ab+b2£©=a3+b3
£¨1£©Ð¡´ÏÔÚ½øÐÐÕûʽ³Ë·¨Á·Ï°Ê±£¬·¢ÏÖÁËÈçϵÄÁ¢·½ºÍ¹«Ê½£º
¢ÙÀûÓó˷¨·¨Ôò£¬°ïС´Ïд³öÁ¢·½ºÍ¹«Ê½µÄÍÆÑݹý³Ì£»
¢Ú¸ù¾ÝÒòʽ·Ö½âÓëÕûʽ³Ë·¨Ö®¼äµÄ»¥Äæ¹Øϵ£¬Ð´³öÒòʽ·Ö½âµÄÁ¢·½ºÍ¹«Ê½£ºa3+b3=£¨a+b£©£¨a2-ab+b2£©£»
£¨2£©ÇëÄ£·Â²ÄÁÏÖеġ°×ª»»¡±·½·¨£¬·Ö½âÒòʽ£ºa3-8£®

·ÖÎö £¨1£©¢ÙÖ±½ÓÀûÓÃÕûʽµÄ³Ë·¨¼ÆËã·½·¨¼ÆËãºÏ²¢µÃ³ö½á¹û¼´¿É£»
¢ÚÖ±½ÓÀûÓâÙд³ö´ð°¸¼´¿É£»
£¨2£©ÀûÓÃÁ¢·½ºÍ¹«Ê½·Ö½âÒòʽ¼´¿É£®

½â´ð ½â£º£¨1£©¢Ù£¨a+b£©£¨a2-ab+b2£©
=a3-a2b+ab2+a2b-ab2+b3
=a3+b3£®
¢Úa3+b3=£¨a+b£©£¨a2-ab+b2£©£»
£¨2£©a3-8
=a3+£¨-2£©3
=£¨a-2£©£¨a2+2a+4£©£®

µãÆÀ ´ËÌ⿼²éÒòʽ·Ö½âµÄʵ¼ÊÔËÓã¬ÕÆÎÕÔËËãµÄ¿ÉÄæÐÔ£¬ÀûÓÃÀà±ÈµÄ·½·¨½â¾öÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ä³ÖÐѧÆßÄ꼶A°àÓÐ50ÈË£¬Ä³´Î»î¶¯ÖзÖΪËÄ×飬µÚÒ»×éÓÐaÈË£¬µÚ¶þ×é±ÈµÚÒ»×éµÄÒ»°ë¶à6ÈË£¬µÚÈý×éµÄÈËÊýµÈÓÚÇ°Á½×éÈËÊýµÄºÍ£®
£¨1£©ÇóµÚÈý×éµÄÈËÊý£®£¨Óú¬aµÄʽ×Ó±íʾ£©
£¨2£©ÇóµÚËÄ×éµÄÈËÊý£®£¨Óú¬aµÄʽ×Ó±íʾ£©
£¨3£©ÊÔÅжÏa=2ʱ£¬ÊÇ·ñÂú×ãÌâÒ⣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¾Ý½»¹Ü²¿ÃÅͳ¼Æ£¬³¬ËÙÐÐÊ»ÊÇÒý·¢½»Í¨Ê¹ʵÄÖ÷ÒªÔ­Òò£®Ä³Ð£Êýѧ¿ÎÍâС×éµÄ¼¸¸öͬѧÏë³¢ÊÔÓÃ×Ô¼ºËùѧµÄ֪ʶ¼ì²â³µËÙ£¬Ë«Áú´óµÀij·¶ÎµÄÏÞËÙÊÇ£ºÃ¿Ð¡Ê±80ǧÃ×£¨¼´×î¸ßʱËÙ²»³¬¹ý80ǧÃ×£©£¬Èçͼ£¬ËûÃǽ«¹Û²âµãÉèÔÚµ½¹«Â·lµÄ¾àÀëΪ0.1ǧÃ×µÄP´¦£®Õâʱ£¬Ò»Á¾½Î³µÓɽ­Äþ¶«É½Ïò»¿Ú»ú³¡ÔÈËÙÖ±ÏßÊ»À´£¬²âµÃ´Ë³µ´ÓA´¦ÐÐÊ»µ½B´¦ËùÓõÄʱ¼äΪ3Ã룬²¢²âµÃ¡ÏAPO=59¡ã£¬¡ÏBPO=45¡ã£®ÊÔ¼ÆËãAB²¢Åжϴ˳µÊÇ·ñ³¬ËÙ£¿£¨²Î¿¼Êý¾Ý£ºsin59¡ã¡Ö0.86£¬cos59¡ã¡Ö0.52£¬tan59¡ã¡Ö1.66£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼×¡¢ÒÒÁ½É̳¡×ÔÐж¨¼ÛÏúÊÛijһÉÌÆ·£®
£¨1£©¼×É̳¡½«¸ÃÉÌÆ·Ìá¼Û15%ºóµÄÊÛ¼ÛΪ1.15Ôª£¬Ôò¸ÃÉÌÆ·ÔÚ¼×É̳¡µÄÔ­¼ÛΪ1Ôª£»
£¨2£©ÒÒÉ̳¡½«¸ÃÉÌÆ·Ìá¼Û20%ºó£¬ÓÃ6ԪǮ¹ºÂò¸ÃÉÌÆ·µÄ¼þÊý±ÈûÌá¼ÛÇ°ÉÙÂò1¼þ£¬Çó¸ÃÉÌÆ·ÔÚÒÒÉ̳¡µÄÔ­¼ÛÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Á½Î»Í¬Ñ§½«Í¬Ò»¸ö¶þ´ÎÈýÏîʽ½øÐÐÒòʽ·Ö½âʱ£¬Ò»Î»Í¬Ñ§Òò¿´´íÁËÒ»´ÎÏîϵÊý¶ø·Ö½â³É£¨x-1£©£¨x-9£©£»ÁíһλͬѧÒò¿´´íÁ˳£ÊýÏî¶ø·Ö½â³É£¨x-2£©£¨x-4£©£¬ÔòÔ­¶àÏîʽÒòʽ·Ö½âµÄÕýÈ·½á¹ûÊÇ£º£¨x-3£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÔ2ºÍ-3Ϊ¸ùµÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®x2+x+6=0B£®x2+x-6=0C£®x2-x+6=0D£®x2-x-6=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶þÔªÒ»´Î·½³Ì3x+2y=12µÄÕýÕûÊý½âΪ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=1}\\{y=4.5}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐÒ»×é°´¹æÂÉÅÅÁеÄÊý£º2£¬-4£¬8£¬-16¡­µÚ2015¸öÊýÊÇ£¨¡¡¡¡£©
A£®22015B£®-22015C£®-22014D£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁжþ´Î¸ùʽÖУ¬×î¼ò¶þ´Î¸ùʽÊÇ£¨¡¡¡¡£©
A£®$\sqrt{9x}$B£®$\sqrt{3{x^2}}$C£®$\sqrt{{x^2}-4}$D£®$\sqrt{0.2x}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸