精英家教网 > 初中数学 > 题目详情

【题目】如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;

②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.

【答案】①②③④

【解析】

①如图1,作AUNQU,交BDH,连接ANAC

∵∠AMN=∠ABC=90°,

∴A,B,N,M四点共圆,

∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,

∴∠ANM=∠NAM=45°,

∴AM=MN;

②由同角的余角相等知,∠HAM=∠PMN,

∴Rt△AHM≌Rt△MPN,

∴MP=AH=AC=BD;

③∵∠BAN+∠QAD=∠NAQ=45°,

∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,

∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,

∴点U在NQ上,有BN+DQ=QU+UN=NQ;

④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,

∴四边形SMWB是正方形,有MS=MW=BS=BW,

∴△AMS≌△NMW

∴AS=NW,

∴AB+BN=SB+BW=2BW,

∵BW:BM=1:

.

故答案为:①②③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在中,,以为直径作分别交于点,连接,过点,垂足为,交于点

(1)求证:

(2)若,求线段的长;

(3)在的条件下,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,,点从点出发向点运动,运动到点即停止;同时点从点出发向点运动,运动到点即停止.点的速度的速度都是,连结,设点运动的时间为

为何值时,四边形是矩形?

为何值时,四边形是菱形?

分别求出中菱形的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,有一抛物线,与轴交于点、点,现将背面完全相同,正面分别标有数张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点的横坐标,将该数的平方作为点的纵坐标,则点落在抛物线与轴围成的区域内(含边界)的概率为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点三点.

求此抛物线的解析式;

若点是线段上的点(不与重合),过轴交抛物线于,设点的横坐标为,请用含的代数式表示的长;

的条件下,连接,是否存在点,使的面积最大?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】京张高铁是世界上首条智能化高速铁路,起点是北京北,终点是张家口南.建成后的京张高铁铁路运行里程由原来的196km缩短为174km,运行时间缩短为原来的,平均速度比原来快150千米/小时.求建成后的京张高铁从北京北至张家口南的运行时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是(  )

A. 7 B. 8 C. 14 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为的等边三角形的顶点分别在边上当在边上运动时,随之在边上运动,等边三角形的形状保持不变,运动过程中,点到点的最大距离为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACAD为边BC上的中线,点EAD上,以点A为圆心,AB长为半径画弧,交BE的延长线于点F,点GEF上,且∠EAG=∠CAF,连接CE

1)依题意补全图形;

2)求证:FGCE

3)若EF平分∠AEC,则∠BAE与∠ABE满足的等量关系为   

查看答案和解析>>

同步练习册答案