【题目】如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.
【答案】①②③④
【解析】
①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN;
②由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN,
∴MP=AH=AC=BD;
③∵∠BAN+∠QAD=∠NAQ=45°,
∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ;
④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴.
故答案为:①②③④
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,,以为直径作分别交,于点,,连接和,过点作,垂足为,交于点.
(1)求证:;
(2)若,求线段的长;
(3)在的条件下,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,点从点出发向点运动,运动到点即停止;同时点从点出发向点运动,运动到点即停止.点、的速度的速度都是,连结,,,设点、运动的时间为.
当为何值时,四边形是矩形?
当为何值时,四边形是菱形?
分别求出中菱形的周长和面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,有一抛物线,与轴交于点、点,现将背面完全相同,正面分别标有数、、、的张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点的横坐标,将该数的平方作为点的纵坐标,则点落在抛物线与轴围成的区域内(含边界)的概率为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点,,三点.
求此抛物线的解析式;
若点是线段上的点(不与,重合),过作轴交抛物线于,设点的横坐标为,请用含的代数式表示的长;
在的条件下,连接,,是否存在点,使的面积最大?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】京张高铁是世界上首条智能化高速铁路,起点是北京北,终点是张家口南.建成后的京张高铁铁路运行里程由原来的196km缩短为174km,运行时间缩短为原来的,平均速度比原来快150千米/小时.求建成后的京张高铁从北京北至张家口南的运行时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是( )
A. 7 B. 8 C. 14 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为的等边三角形的顶点分别在边,上当在边上运动时,随之在边上运动,等边三角形的形状保持不变,运动过程中,点到点的最大距离为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD为边BC上的中线,点E在AD上,以点A为圆心,AB长为半径画弧,交BE的延长线于点F,点G在EF上,且∠EAG=∠CAF,连接CE.
(1)依题意补全图形;
(2)求证:FG=CE;
(3)若EF平分∠AEC,则∠BAE与∠ABE满足的等量关系为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com