精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠C为直角,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.

1.若AC=8,AB=12,求⊙O的半径;

2.连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由

 

 

1.设⊙O的半径为r.

       ∵BC切⊙O于点D  ∴OD⊥BC

       ∵∠C=90°∴OD∥AC ∴△OBD∽△ABC.   …………………………2分

 = ,即  解得: 

∴⊙O的半径为………………………4分

2.四边形OFDE是菱形      ………………5分

       ∵四边形BDEF是平行四边形 ∴∠DEF=∠B.

∵∠DEF=∠DOB ∴∠B=∠DOB.

∵∠ODB=90° ∴∠DOB+∠B=90° ∴∠DOB=60°

∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE是等边三角形

∴OD=DE ∵OD=OF∴DE=OF ∴四边形OFDE是平行四边形  ………7分

∵OE=OF∴平行四边形OFDE是菱形.  …………………………………8分

解析:(1)连接OD,设⊙O的半径为r,可证出△BOD∽△BAC,则,从而求得r;(2)由四边形BDEF是平行四边形,得∠DEF=∠B,再由圆周角定理可得,∠B= ∠DOB,则△ODE是等边三角形,先得出四边形OFDE是平行四边形.再根据OE=OF,则平行四边形OFDE是菱形.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案