精英家教网 > 初中数学 > 题目详情
(12分)如图,已知△ABC和△DEF是两个边长都为10cm的等边三角形,且B、D、C、E都在同一条直线上,连接AD、CF.

(1)求证:四边形ADFC是平行四边形;
(2)若BD=3cm,△ABC沿着BE的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒,
①当t为何值时,平行四边形ADFC是菱形?请说明理由;
②平行四边形ADFC有可能是矩形吗?若可能,求出t的值;若不可能,请说明理由。
(12分)
证明:(1)∵△ABC和△DEF是两个边长为10cm的等边三角形.
∴AC="DF," ∠ACD=∠FDE=60°.…………………………………………3分
∴AC//DF, ∴四边形ADFC是平行四边形.………………………………6分
(2)①当t=3秒时, 平行四边形ADFC是菱形,此时B与D重合, ∴AD="DF, "
∴四边形ADFC是平行四边形.………………………………………………………………9分
②当t=13秒时, 平行四边形ADFC是矩形.此时B与E重合,A、E、F共线,且AF="CD,"
∴平行四边形ADFC是矩形. ……………………………………………………12分
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知平行四边形ABCD(AB>BC),分别以点A、B、C、D为起点或终点的向量
中,与向量的模相等的向量是.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如下左图,已知正方形ABCD的边长为m,△BPC是等边三角形,则△CDP的
面积为___   (用含m的代数式表示) .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.
(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2:3,顶宽是3米,路基高是4米,则路基的下底宽是(   ).
A.7米B.9米C.12米D.15米

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011山东济南,7,3分)如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( )
A.2 B.C.4D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·丹东)(本题12分)已知:正方形ABCD.
(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.
(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转,当时,连接BE、DF,此时(1)中结论是否成立,如果成立,请证明;如果不成立,请说明理由.
(3)如图3,等腰直角三角形FAE绕直角顶点A顺时针旋转,当时,连接BE、DF,猜想当AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.
(4)如图4,等腰直角三角形FAE绕直角顶点A顺时针旋转,当时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(9分)如图1,在△ABC中,AB=AC,D是底边BC上的一点,BD>CD,将△ABC
沿AD剪开,拼成如图2的四边形ABDC′.
(1)四边形ABDC′具有什么特点?
(2)请同学们在图3中,用尺规作一个以MN,NP为邻边的四边形MNPQ,使四边形MNPQ具有上述特点(要求:写出作法,但不要求证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

同步练习册答案