精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.
(1)设直线BC的解析式为y=mx+n,
将B(5,0),C(0,5)两点的坐标代入,
5m+n=0
n=5
,解得
m=-1
n=5

所以直线BC的解析式为y=-x+5;
将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,
25+5b+c=0
c=5
,解得
b=-6
c=5

所以抛物线的解析式为y=x2-6x+5;

(2)设M(x,x2-6x+5)(1<x<5),则N(x,-x+5),
∵MN=(-x+5)-(x2-6x+5)=-x2+5x=-(x-
5
2
2+
25
4

∴当x=
5
2
时,MN有最大值
25
4


(3)∵MN取得最大值时,x=2.5,
∴-x+5=-2.5+5=2.5,即N(2.5,2.5).
解方程x2-6x+5=0,得x=1或5,
∴A(1,0),B(5,0),
∴AB=5-1=4,
∴△ABN的面积S2=
1
2
×4×2.5=5,
∴平行四边形CBPQ的面积S1=6S2=30.
设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.
∵BC=5
2

∴BC•BD=30,
∴BD=3
2

过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.
∵BC⊥BD,∠OBC=45°,
∴∠EBD=45°,
∴△EBD为等腰直角三角形,BE=
2
BD=6,
∵B(5,0),
∴E(-1,0),
设直线PQ的解析式为y=-x+t,
将E(-1,0)代入,得1+t=0,解得t=-1
∴直线PQ的解析式为y=-x-1.
解方程组
y=-x-1
y=x2-6x+5
,得
x1=2
y1=-3
x2=3
y2=-4

∴点P的坐标为P1(2,-3)(与点D重合)或P2(3,-4).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.
(1)求过A,B,C三点的抛物线的解析式;
(2)求点D的坐标;
(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P点坐标为______;
(2)若P,A两点在抛物线y=-
4
3
x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大?若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xoy中,以原点为圆心的⊙O的半径是
4
5
5
,过A(0,4)作⊙O的切线交x轴于点B,T是切点,抛物线y=ax2+bx+c的顶点为C(3,-
1
2
),且抛物线过A、B两点.
(1)求此抛物线的解析式;
(2)如果此抛物线的对称轴交x轴于D点,问在y轴的负半轴上是否存在点P,使△BCD△OPB?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索的主要过程:
(1)经过多少时间后,P、Q两点的距离为5
2
cm2
(2)经过多少时间后,S△PCQ的面积为15cm2
(3)请用配方法说明,何时△PCQ的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xOy中,点P为函数y=
1
4
x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=
1
4
x2有无其它公共点并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小胜和小阳用如图所示的两个转盘做游戏,游戏规则如下:分别转两个转盘,将x转盘转到的数字作为横坐标,将y转盘转到的数字作为纵坐标,组成一个点的坐标:(x,y).当这个点在一次函数y=kx的图象上时,小胜得奖品;当这个点在二次函数y=ax2的图象上时,小阳得奖品;其他情况无得奖品.主持人在游戏开始之前分别转了这两个转盘,x盘转到数字3,y盘转到数字9,它们组成点刚好都在这两个函数的图象上.
(1)求k和a的值;
(2)主持人想用列表法求出小胜得奖品和小阳得奖品的概率.请你补全表中他未完成的部分,并写出两人得奖品的概率:P(小胜得奖品)=______,P(小阳得奖品)=______;
X
Y
123
6
8
9(3,9)
(3)请你给二次函数y=ax2的右边加上一个常数c(a值及游戏规则不变),使游戏对双方公平,则添上c后的二次函数的解析式应为______.

查看答案和解析>>

同步练习册答案