精英家教网 > 初中数学 > 题目详情
(1998•天津)若方程m2x2-(2m-3)x+1=0的两个实数根的倒数和是S,求S的取值范围.
分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=
2m-3
m2
,x1•x2=
1
m2
,则可计算出S=
x1+x2
x1x2
=
2m-3
m2
1
m2
=2m-3,再根据根的判别式得到m2≠0且△=(2m-3)2-4m2≥0,即m的范围为m≤
3
4
且m≠0,然后把m=
1
2
(S+3)代入两个不等式得到关于S的两个不等式,再求出两不等式的公共部分即可.
解答:解:设方程的两根为x1,x2,则x1+x2=
2m-3
m2
,x1•x2=
1
m2

∵S=
1
x1
+
1
x2

∴S=
x1+x2
x1x2
=
2m-3
m2
1
m2
=2m-3,
∵方程m2x2-(2m-3)x+1=0的两个实数根,
∴m2≠0且△=(2m-3)2-4m2≥0,解得m≤
3
4

∴m的范围为m≤
3
4
且m≠0,
而m=
1
2
(S+3),
1
2
(S+3)≤
3
4
1
2
(S+3)≠0,
∴S的范围为S≤-
3
2
且S≠-3.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程的根的判别式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1998•天津)若4y-3x=0,则
x+y
y
=
7
3
7
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•天津)一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时,一天,小船从早晨6点由A港出发顺流行到B港时,发现一救生圈在途中掉落水中,立刻返回,一小时后找到救生圈.问:
(1)若小船按水流速度由A港漂流到B港需要多少小时?
(2)救生圈是何时掉入水中的?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•天津)已知抛物线y=mx2-(3m+
43
)x+4
与x轴交于两点A、B,与y轴交于C点,若△ABC是等腰三角形,求抛物线的解析式.

查看答案和解析>>

同步练习册答案