精英家教网 > 初中数学 > 题目详情
设E、F是正方形ABCD的边BC、CD的中点,若AB=4,则△AEF的面积是(     )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•惠山区一模)阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:______.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省无锡市惠山区中考数学一模试卷(解析版) 题型:解答题

阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:______

查看答案和解析>>

科目:初中数学 来源:江苏期中题 题型:解答题

阅读与证明:    
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45 °,
求证:BF+DE=EF。
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段。如图1延长ED至点F',使DF'=BF,连接A F',易证△ABF≌△ADF',进一步证明△AEF≌△AEF',即可得结论。
(1)请你将下面的证明过程补充完整。
证明:延长ED至F',使DF'=BF,
∵ 四边形ABCD是正方形
∴ AB=AD,∠ABF=∠ADF'=90°,
∴ △ABF≌△ADF'(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上。
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:                

查看答案和解析>>

科目:初中数学 来源: 题型:

解:(1)如图①AH=AB

(2)数量关系成立.如图②,延长CB至E,使BE=DN

∵ABCD是正方形

∴AB=AD,∠D=∠ABE=90°

∴Rt△AEB≌Rt△AND

∴AE=AN,∠EAB=∠NAD

∴∠EAM=∠NAM=45°

∵AM=AM

∴△AEM≌△ANM

∵AB、AH是△AEM和△ANM对应边上的高,

∴AB=AH

(3)如图③分别沿AM、AN翻折△AMH和△ANH,

得到△ABM和△AND

∴BM=2,DN=3,∠B=∠D=∠BAD=90°

分别延长BM和DN交于点C,得正方形ABCE.

由(2)可知,AH=AB=BC=CD=AD.                          

  设AH=x,则MC=,  NC=                             图②

在Rt⊿MCN中,由勾股定理,得

                                    

解得.(不符合题意,舍去)

∴AH=6.

查看答案和解析>>

同步练习册答案