精英家教网 > 初中数学 > 题目详情
某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
(1),且(0≤x≤160,且x为10的正整数倍);(2);(3)订住34个房间时,宾馆每天利润最大,最大利润为10880元.

试题分析:本题是二次函数的应用,特别容易出现的错误是在求最值时不考虑x的范围,直接求顶点坐标.(1)理解每个房间的房价每增加x元,则减少房间间,则可以得到y与x之间的关系;(2)每个房间订住后每间的利润是房价减去20元,每间的利润与所订的房间数的积就是利润;(3)求出二次函数的对称轴,根据二次函数的增减性以及x的范围即可求解.
试题解析:
解:(1)由题意得:,且(0≤x≤160,且x为10的正整数倍)
(2),即
(3)w=
抛物线的对称轴是:,抛物线的开口向下,当x<170时,w随x的增大而增大,但0≤x≤160,因而当x=160时,即房价是340元时,利润最大,
此时一天订住的房间数是:50-(160÷10)=34间,
最大利润是:34×(340-20)=10880元.
答:一天订住34个房间时,宾馆每天利润最大,最大利润为10880元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线与x轴交于点A、B(A左B右),其中点B的坐标为(7,0),设抛物线的顶点为C.

(1)求抛物线的解析式和点C的坐标;
(2)如图1,若AC交y轴于点D,过D点作DE∥AB交BC于E.点P为DE上一动点,PF⊥AC于F,PG⊥BC于G.设点P的横坐标为a,四边形CFPG的面积为y,求y与a的函数关系式和y的最大值;
(3)如图2,在条件(2)下,过P作PH⊥x轴于点H,连结FH、GH,是否存在点P,使得△PFH与△PHG相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象与x轴交于A、B两点(B在A的左侧),顶点为C, 点D(1,m)在此二次函数图象的对称轴上,过点D作y轴的垂线,交对称轴右侧的抛物线于E点.

(1)求此二次函数的解析式和点C的坐标;
(2)当点D的坐标为(1,1)时,连接BD、.求证:平分
(3)点G在抛物线的对称轴上且位于第一象限,若以A、C、G为顶点的三角形与以G、D、E为顶点的三角形相似,求点E的横坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数的图象经过点
(1)求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少平移  个单位,使得该图象的顶点在原点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.

(1)求点A的坐标;
(2)若△OBC是等腰三角形,求此抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正三角形ABC的边长为3cm,动点P从点A出发,以每秒的速度,沿A→B→C的方向运动,到达点C时停止.设运动时间为(秒),=PC2,则关于的函数图象大致为(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为二次函数的图象,在下列说法中:①<0,②方程的两实根分别为,③>0,④当x>1时,y随x的增大而增大,其中正确的有:(    )
 
A.①②③ B.①②④ C.②③④ D.①③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

对于反比例函数y=,当x>0时,y随x的增大而增大,则二次函数的大致图象是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=x2向上平移2个单位,得到新抛物线的函数表达式是(   )
A.y=x2-2B.y=(x-2)2C.y=x2+2D.y=(x+2)2

查看答案和解析>>

同步练习册答案