如图,在△ABC中,∠CAB=90°,∠B<∠C, AD、AE、AF分别是△ABC的高、角平分线、中线.则∠DAE与∠FAE的大小关系是( )
(A) ∠DAE>∠FAE (B) ∠DAE=∠FAE
(C) ∠DAE<∠FAE (D) 与∠C的度数有关,无法判断
B
解析试题分析:根据题意可知BF=CF,由AF为BC的中线,可得AF=BF=CF,由AD⊥BC,AF=BF=CF,可知,∠C=∠BAD=∠FAC,结合AE为角平分线,即可推出∠FAE=∠DAE.
∵直角三角形ABC中,AF为BC的中线,
∴BF=CF,AF=BC,
∴AF=BF=CF,
∵∠BAC=90°,AD⊥BC,
∴∠C=∠BAD,
∵AF=BF=CF,
∴∠C=∠BAD=∠FAC,
∵AE为角平分线,
∴∠BAE=∠EAC,
∴∠FAE=∠DAE.
故选B.
考点:直角三角形的性质,角平分线的性质,垂线的性质
点评:解题的关键是熟练掌握直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.
科目:初中数学 来源: 题型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com