【题目】已知二次函数y=a(x-m)2-2a(x-m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC是等腰直角三角形时,求a的值.
【答案】(1)见解析;(2).
【解析】
试题(1)二次函数和x轴有两个交点,判别式>0即可;
(2)先求出顶点坐标,由△ABC是等腰直角三角形,可以得出AB边上高等于1,即可得出a的值.
试题解析:
(1)证明:y=a(x-m)2-2a(x-m)=ax2-(2am+2a)x+am2+2am
当a≠0时,=(2am+2a)2-4a(am2+2am)
∵
∴
∴不论a与m为何值,该函数的图象与x轴总有两个公共点.
(2)y=a(x-m)2-2a(x-m)=a(x-m-1)2-a
∴C(m+1,-a)
当y=0时,
解得x1=m,x2=m+2.
∴AB=(m+2)-m=2.
当△ABC是等腰直角三角形时,可求出AB边上高等于1.
∴.
∴.
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)根据已知条件画出图形;
(2)求证:四边形AFCE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在和中,与交于点E,现有三个条件:①;②,③,请你从三个条件中选出两个作为条件,另一个作为结论,组成一个真命题,并给予证明.
(1)条件是 ______ ;结论是 ______ (填序号);
(2)证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C,E为⊙O上的两点,AC平分∠EAB,CD⊥AE于D.
(1)求证:CD为⊙O的切线;
(2)过点C作CF⊥AB于F,如图2,判断CF和AF,DE之间的数量关系,并证明之;
(3)若AD-OA=1.5,AC=3,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).
(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.
(1)求证:∠CAE=∠B;
(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点(3,-2)在反比例函数y=的图象上,则下列点也在该反比例函数y=的图象的是( )
A. (3,-3) B. (1,6) C. (-2,3) D. (-2,-3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com