【题目】如图所示,数学家莫伦发现了世界上第一个完美长方形,它恰好能够分割成大小不同的正方形,请你完成下面计算.
(1)如果标注1,2的正方形的边长分别是1和1.2,那么标注3的正方形的边长为________.标注5的正方形的边长为________.
(2)如果标注1,2的正方形的边长分别是和,求标注10的正方形的边长是多少?(用含的代数式表示)
(3)若在(2)的条件下,“勤奋小组”继续探究发现,标注9的正方形边长有两种表示方法,若标注9的正方形的边长是15,求的值?
【答案】(1)2.2,4.6;(2);(3)
【解析】
(1)根据图形和题意即可求出结论;
(2)根据图形和题意即可求出结论;
(3)标注9的正方形边长=标注3的正方形边长+标注4的正方形边长-标注10的正方形边长或标注9的正方形边长=标注7的正方形边长+标注10的正方形边长+标注10的正方形边长,然后联立二元一次方程组即可求出y的值.
解:(1)由题意可得:
标注3的正方形边长为:;
标注4的正方形边长为:;
标注5的正方形边长为:;
故答案为:.
(2)由题意可得:
标注3的正方形边长为:;
标注4的正方形边长为:;
标注5的正方形边长为:;
标注6的正方形边长为:;
标注7的正方形边长为:;
标注10的正方形边长为:.
(3)由(2)可得:标注9的正方形边长为:或
联立方程组
解得.
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,AG=3DG,其中不正确的结论的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.
(1)求今年A型车每辆车的售价.
(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,点 P 从 A 点出发沿 A-C-B 路径向终点运动,终点为 B点;点 Q 从 B 点出发沿 B-C-A 路径向终点运动,终点为 A 点,点 P 和 Q 分别以 1cm/s 和 xcm / s 的运动速度 同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过 P 和 Q 作 PE⊥ l 于 E,QF⊥ l 于 F.
(1)如图,当 x 2 时,设点 P 运动时间为 ts ,当点 P 在 AC 上,点 Q 在 BC 上时:
①用含 t 的式子表示 CP 和 CQ,则 CP= cm,CQ= cm;
②当 t 2 时,PEC 与QFC 全等吗?并说明理由;
(2)请问:当 x 3 时,PEC 与QFC 有没有可能全等?若能,直接写出符合条件的 t 的值;若不能,请说明 理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A′B′C′;
(3)点B′的坐标为 .
(4)△ABC的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.
(1)求证:△ABD≌△ACE;
(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;
(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com