【题目】如图,已知,分别为正方形的边,的中点,与交于点,为的中点,则下列结论:①,②,③,④.其中正确结论的有( )
A.个B.个C.个D.个
【答案】B
【解析】
根据正方形的性质可得,然后利用SAS即可证出,根据全等三角形的性质可得:,根据直角三角形的性质和三角形的内角和,即可判断①;根据中线的定义即可判断②;设正方形的边长为,根据相似三角形的判定证出,列出比例式,即可判断③;过点作于,易证△AMN∽△AFB,列出比例式,利用勾股定理求出ME、MF和MB即可判断④.
解:在正方形中,,,
、分别为边,的中点,
,
在和中,
,
,
,
,
,
故①正确;
是的中线,
,
,
故②错误;
设正方形的边长为,则,
在中,,
,,
,
,即,
解得:,
,
,
故③正确;
如图,过点作于,
∴
∴△AMN∽△AFB
∴,
即,
解得,
,
根据勾股定理,,
,
,故④正确.
综上所述,正确的结论有①③④共3个
故选:B.
科目:初中数学 来源: 题型:
【题目】某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知边长为1的正方形ABCD,在BC边上有一动点E,连接AE,作EF⊥AE,交CD边于点F.设BE=x,CF=y.
(1)写出y与x的函数关系式.
(2)CF的长可能等于吗?请说明理由.
(3)点E在什么位置时,CF的长为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)直接写出点A、B、C的坐标;
(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使,请求出点D的坐标;
(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).
(1)填空:t的值为 (用含m的代数式表示)
(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;
(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四川是闻名天下的“熊猫之乡”,每年到大熊猫基地游玩的游客络绎不绝,大学生小张加入创业项目,项目帮助她在基地附近租店卖创意熊猫纪念品.已知某款熊猫纪念物成本为30元/件,当售价为45元/件时,每天销售250件,售价每上涨1元,销量下降10件.
(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;
(2)若每天该熊猫纪念物的销售量不低于240件的情况下,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?
(3)小张决定从这款纪念品每天的销售利润中捐出150元给希望工程,为了保证捐款后这款纪念品每天剩余利润不低于3600元,试确定该熊猫纪念物销售单价的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是( )
A.②④B.①③C.②③④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是( )
A. 60cm2 B. 50cm2 C. 40cm2 D. 30cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=,AD=6,求线段AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com