精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(1)该抛物线的解析式为y=﹣x(x﹣5)=﹣x2+5x;
(2)M(2,6);
(3)当△PQB为等腰三角形时,m的值为1,2或

解析试题分析:(1)由于抛物线与x轴的两个交点已知,因此抛物线的解析式可设成交点式,然后把点B的坐标代入,即可求出抛物线的解析式;
(2)以O、A、B、M为顶点的四边形中,△OAB的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大;求出另一个三角形面积的表达式,利用二次函数的性质确定其最值;本问需分类讨论:
①当0<x≤4时,点M在抛物线OB段上时,如答图1所示;
②当4<x≤5时,点M在抛物线AB段上时,图略.
(3)△PQB为等腰三角形时,有三种情形,需要分类讨论,避免漏解:
①若点B为顶点,即BP=BQ,如答图2﹣1所示;
②若点P为顶点,即PQ=PB,如答图2﹣2所示;
③若点P为顶点,即PQ=QB,如答图2﹣3所示.
试题解析:(1)∵该抛物线经过点A(5,0),O(0,0),
∴该抛物线的解析式可设为y=a(x﹣0)(x﹣5)=ax(x﹣5).
∵点B(4,4)在该抛物线上,
∴a×4×(4﹣5)=4.
∴a=﹣1.
∴该抛物线的解析式为y=﹣x(x﹣5)=﹣x2+5x;
(2)以O、A、B、M为顶点的四边形中,△OAB的面积固定,因此只要另外一个三角形面积最大,则四边形面积即最大.
①当0<x≤4时,点M在抛物线OB段上时,如答图1所示.

∵B(4,4),∴易知直线OB的解析式为:y=x.
设M(x,﹣x2+5x),
过点M作ME∥y轴,交OB于点E,则E(x,x),
∴ME=(﹣x2+5x)﹣x=﹣x2+4x.
SOBM=SMEO+SMEB=ME(xE﹣0)+ME(xB﹣xE)=ME•xB=ME×4=2ME,
∴SOBM=﹣2x2+8x=﹣2(x﹣2)2+8
∴当x=2时,SOBM最大值为8,即四边形的面积最大.
②当4<x≤5时,点M在抛物线AB段上时,
可求得直线AB解析式为:y=﹣4x+20.
设M(x,﹣x2+5x),
过点M作ME∥y轴,交AB于点E,则E(x,﹣4x+20),
∴ME=(﹣x2+5x)﹣(﹣4x+20)=﹣x2+9x﹣20.
SABM=SMEB+SMEA=ME(xE﹣xB)+ME(xA﹣xE)=ME•(xA﹣xB)=ME×1=ME,
∴SABM=﹣x2+x﹣10=﹣(x﹣2+
∴当x=时,SABM最大值为,即四边形的面积最大.
比较①②可知,当x=2时,四边形面积最大.
当x=2时,y=﹣x2+5x=6,
∴M(2,6);
(3)由题意可知,点P在线段OB上方的抛物线上.
设P(m,﹣m2+5m),则Q(m,m)
当△PQB为等腰三角形时,
①若点B为顶点,即BP=BQ,如答图2﹣1所示.
过点B作BE⊥PQ于点E,则点E为线段PQ中点,
∴E(m,).
∵BE∥x轴,B(4,4),
=4,
解得:m=2或m=4(与点B重合,舍去)
∴m=2;

②若点P为顶点,即PQ=PB,如答图2﹣2所示.
易知∠BOA=45°,∴∠PQB=45°,则△PQB为等腰直角三角形.
∴PB∥x轴,
∴﹣m2+5m=4,
解得:m=1或m=4(与点B重合,舍去)
∴m=1;
③若点P为顶点,即PQ=QB,如答图2﹣3所示.
∵P(m,﹣m2+5m),Q(m,m),
∴PQ=﹣m2+4m.
又∵QB=(xB﹣xQ)=(4﹣m),
∴﹣m2+4m=(4﹣m),
解得:m=或m=4(与点B重合,舍去),
∴m=
综上所述,当△PQB为等腰三角形时,m的值为1,2或
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

如图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是       .

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

抛物线先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是       

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与x轴交于A,B两点,对称轴为直线,直线AD交抛物线于点D(2,3).

(1)求抛物线的解析式;
(2)已知点M为第三象限内抛物线上的一动点,当点M在什么位置时四边形AMCO的面积最大?并求出最大值;
(3)当四边形AMCO面积最大时,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线BC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线图象经过A(-1,0),B(4,0)两点.
(1)求抛物线的解析式;
(2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.
①求证:四边形DECF是矩形;
②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).
(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;
(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;
(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数的图象过A(2,0),B(0,-1)和C(4,5)三点。
(1)求二次函数的解析式;
(2)设二次函数的图象与轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线,并写出当在什么范围内时,一次函数的值大于二次函数的值。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为 ,求点M的坐标.

查看答案和解析>>

同步练习册答案